
$ 44.99 US
£ 27.99 UK
€ 39.99 EU

Prices do not include
local sales tax or VAT
where applicable

Packt Publishing

Birmingham - Mumbai

www.packtpub.com

Programming Windows Workfl ow
Foundation: Practical WF Techniques
and Examples using XAML and C#

Windows Workflow Foundation (WF) is a technology for defining, executing, and managing
workflows. It is part of the .NET Framework 3.0 and will be available natively in the Windows
Vista operating system.

In this book K Scott Allen provides you with all the information needed to develop successful
applications with Windows Workflow Foundation. Fast-paced and to-the-point, this book takes
you through the important topics of Windows WF development with clear explanations, from
compilation to the base activity library to runtime services. We develop an example workfl ow
system through the book, showcasing the technology and techniques used.

What you will learn from this book
• Authoring workflows with C# and with XAML
• Creating and managing Sequential Workfl ows
• Working with the activities in the base activity library
• Creating custom activities using a compositional approach and a derivation approach
• Using scheduling services, persistence services, and tracking services
 • Working with State Machines in Windows Workfl ow
 • Using services for communication with a host process and also across a network
 • Creating rules and conditions in Windows Workfl ow Foundation
 • Creating an example “bug reporting” workfl ow solution

Who this book is written for
This book is for .NET developers who want to enhance their applications with fl exible workfl ow
capabilities using Windows Workflow Foundation. This book is not an overview of the Windows
Workflow Foundation architecture, but concentrates on development topics. All the code
examples are in C#.

Program
m

ingW
indow

s W
orkfl ow

 Foundation
K

. S
cott A

llen

F r o m T e c h n o l o g i e s t o S o l u t i o n s

Programming

Windows Workfl ow Foundation

Practical WF Techniques and Examples using XAML and C#

A Concise and Practical Guide to Installation, Administration,
and Customization

K. Scott Allen

Programming Windows
Workflow Foundation: Practical
WF Techniques and Examples
using XAML and C#

A C# developer's guide to the features and programming
interfaces of Windows Workflow Foundation

K. Scott Allen

 BIRMINGHAM - MUMBAI

Programming Windows Workflow Foundation: Practical
WF Techniques and Examples using XAML and C#

Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2006

Production Reference: 1121206

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-21-3

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Author

K. Scott Allen

Reviewer

Dan Kahler

Development Editor

Douglas Paterson

Assistant Development Editor

Nikhil Bangera

Technical Editor

Viraj Joshi

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Abhijeet Deobhakta

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Layouts and Illustrations

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

Scott Allen is a software architect with 14 years of experience in commercial
software development. Scott has worked on platforms ranging from 8-bit embedded
systems to highly scalable and distributed web applications. For the last six years,
Scott has concentrated on the .NET platform, and is a Microsoft MVP. Scott presents
at local code camps and national conferences.

Scott is a founder of the website OdeToCode.com, where he publishes articles and
maintains a blog. Scott previously coauthored Building Websites with the ASP.NET
Community Starter Kit for Packt Publishing, and has also published articles in MSDN
Magazine and Dr. Dobb's Journal.

I'd like to thank Packt's Douglas Paterson for putting up with my
antics over the years. I'd also like to acknowledge the rest of the
Packt team, including Patricia Weir, Abhijeet Deobhakta, and Viraj
Joshi, for their efforts.

Dan Kahler and Nikhil Bangera made this a better book with their
diligent reviewing efforts, and I am grateful.

Finally, there is Beaker. While I was writing, and the rest of the
world was sleeping, Beaker would be on my desk or curled next to
my feet. She'd be sleeping too, but she was always close by until she
passed away. I miss you, Beaker.

About the Reviewer

Dan Kahler is a Senior Engineer with Verizon Business. With over eight
years of experience developing and administering Windows and Web-based
solutions, he specializes in using Microsoft technologies to simplify and automate
day-to-day system administration tasks and to integrate line-of-business
applications. Dan previously contributed to the Microsoft Log Parser Toolkit
(Syngress, ISBN: 1-932266-52-6) as a contributing author, and contributed to the
Microsoft Internet Information Services (IIS) 6.0 Resource Kit (Microsoft Press,
ISBN: 0-735614-20-2) as a technical reviewer and tester. He is active in the Baltimore
.NET user group (www.baltomsdn.com). Dan currently resides in Eldersburg,
Maryland with his wife Shannon and children Nicole and Ethan.

Table of Contents
Preface	 1
Chapter 1: Hello, Workflow	 7

Building Workflow Solutions	 8
A Windows Workflow Tour	 10

Activities	 11
Custom Activities	 11

Visual Studio 2005 Extensions	 12
Windows Workflow and XAML	 13
WF Validation and Debugging	 15
Designer Looks	 15

The Windows Workflow Runtime	 15
Hosting the Windows Workflow Runtime	 16
Runtime Services	 17

Our First Workflow	 19
Summary	 25

Chapter 2: Authoring Workflows	 27
Pure Code	 27

Pure Code and Visual Studio	 28
Objects and Their Relationships	 31
Pure XAML	 32

Using Custom Activities in XAML	 35
Compiling Workflows	 36

Compiling with Wfc.exe	 37
Compiling with WorkflowCompiler	 38
Compilation with MSBuild	 40
Code Generation and XAML Serialization	 42

XAML Activation	 45
XAML-only Summary	 46

Code and XAML Together	 47
Summary	 49

Table of Contents

[ii]

Chapter 3: Sequential Workflows	 51
The SequenceActivity	 51

Simple Flow	 52
Sequences Inside Sequences	 54

Workflows and the Outside World	 56
Workflow Instance Lifetime Events	 56
Workflow Parameters	 60
Raising Events and Invoking Methods	 62

Service Contracts	 63
Service Implementation	 65
Workflow Implementation	 66
Host Implementation	 69

Faults	 70
Summary	 73

Chapter 4: The Base Activity Library	 75
The Basics 	 75

The CodeActivity	 75
The IfElseActivity	 76
The WhileActivity	 78
The SequenceActivity	 78
The SuspendActivity	 78
The TerminateActivity	 79
The ThrowActivity	 79
The InvokeWorkflowActivity	 80
The ParallelActivity	 80
The DelayActivity	 81
The ListenActivity	 82
The EventHandlingScopeActivity	 83
The SynchronizationScopeActivity	 83
The ReplicatorActivity	 83

Local Communication Events	 84
The CallExternalMethodActivity	 85
The HandleExternalEventActivity	 86
The Activity Generator	 87

Fault Handling	 87
The FaultHandlersActivity	 88
The FaultHandlerActivity	 89

Transactions and Compensation	 89
The TransactionScopeActivity	 90
Compensation	 90
The CompensatableSequenceActivity	 91

Table of Contents

[iii]

The CompensatableTransactionScopeActivity	 91
The CompensateActivity	 92

Conditions and Rules	 92
The ConditionedActivityGroup	 92
The PolicyActivity	 94

Web Services	 95
The InvokeWebServiceActivity	 95
The WebServiceInputActivity	 96
The WebServiceOutputActivity	 96
The WebServiceFaultActivity	 96

State Activities	 96
The StateActivity	 97
The StateInitializationActivity	 98
The StateFinalizationActivity	 98
The EventDrivenActivity	 99
The SetStateActivity	 100

Summary	 100
Chapter 5: Custom Activities	 101

Why Would I Build Custom Activities?	 101
Reusability	 102
Extensibility	 102
Domain-Specific Languages	 102

How Do I Build Custom Activities?	 103
Activity Composition	 103

Opening a Black Box	 106
Property Promotion	 107

Composition Summary	 110
Dependency Properties	 111

Activity Binding	 113
Attached Properties	 114
Meta-Properties	 115
Dependency Property Summary	 116

Derivation	 116
ConsoleWriteActivity	 117
Activity Components	 119

Activity Validators	 119
Activity Designers	 120

Activity Execution	 122
Execution Context	 123
Custom Composite Activities	 124

Summary	 127

Table of Contents

[iv]

Chapter 6: Workflow Hosting	 129
The Workflow Runtime	 129

Workflow Runtime Logging	 131
Workflow Runtime Configuration	 133

Workflow Configuration Sections	 133
Scheduling Services	 135

Scheduling Services and Threads	 135
Scheduling Services and Configuration	 137

Scheduling Parameters	 139
Choosing the Right Scheduling Service	 139

Persistence Services	 139
Persistence Classes	 140
The SqlWorkflowPersistenceService	 141

SQL Persistence Service Configuration	 142
Running with Persistence	 143
Persistence and Serialization	 146

Tracking Services	 148
Tracking Classes	 149
Tracking Configuration	 150
Running with Tracking	 151

Tracking Profiles	 154
Data Maintenance	 157

Persistence and Tracking Together	 157
Shared Connection Configuration	 158

Summary	 159
Chapter 7: Event-Driven Workflows	 161

What Is a State Machine?	 161
State Machines in Windows Workflow	 162
Our First State Machine 	 163

Creating the Project	 163
Life of a Bug	 165
The State Activity	 167

The EventDriven Activity	 168
The SetState Activity	 169
The StateInitialization and StateFinalization Activities	 171

Driving the State Machine	 171
Inspecting State Machines	 173

StateMachineWorkflowInstance	 173
State Machine Tracking	 175

Hierarchical State Machines	 176
Summary	 178

Table of Contents

[�]

Chapter 8: Communication in Workflows	 179
Local Communication Services Redux	 179

Correlation Parameters	 180
Correlation Attributes	 183
Correlation Tokens	 185

Role‑Based Authorization	 186
Roles and Activities	 187

Workflow Queues	 189
WorkflowQueue and WorkflowQueueInfo	 190
Finding the Waiting Activity	 191
Canceling a Waiting Activity	 193
Communicating with Queues	 194

Web Service Communication	 194
Workflows as Web Services	 194

WebServiceInput Activity	 195
WebServiceOutput Activity	 196
Publishing Web Service Workflows	 197

Workflows as Web Service Clients	 200
InvokeWebService Activity	 201

Summary	 202
Chapter 9: Rules and Conditions	 203

What are Rules and Conditions?	 204
Working with Conditions	 205

Code Conditions	 205
Rule Conditions	 207

The .rules File	 208
Available Expressions	 210
Rules and Activation	 210

The Conditioned Activity Group	 211
When to Use the CAG	 214

Working with Rules	 214
The Policy Activity	 215

Creating a Policy Workflow	 215
Evaluation	 220
Priority	 220
Rule Dependencies	 221
Controlling Chaining	 225

Rules Engine Tracing and Tracking	 226
Tracing Rules	 226
Tracking Rules	 228

Dynamic Updates	 230
Summary	 232

Index	 233

Preface
Windows Workflow Foundation (WF) is a technology for defining, executing, and
managing workflows. It is part of the .NET Framework 3.0 and will be available
natively in the Windows Vista operating system.

Windows Workflow Foundation might be the most significant piece of middleware
to arrive on the Windows platform since COM+ and the Distributed Transaction
Coordinator. The difference is, not every application needs a distributed transaction,
but nearly every application does have a workflow encoded inside.

This book will help you add that workflow power to your applications.

What This Book Covers
Chapter 1 introduces us to the concept of workflow and describes how Windows
Workflow can solve the difficult problems inherent in workflow solutions. We'll
become familiar with activities as the basic building blocks of a workflow definition
and demonstrate how to author a simple workflow using Visual Studio 2005. This
chapter also describes the runtime services available with WF. By the end of the
chapter we will be able to identify the primary features of Windows Workflow.

Chapter 2 concentrates on authoring workflows. Specifically, we'll look at how
to build workflows with C#, and with extensible application markup language
(XAML). Looking at the workflow compiler, we'll have a better understanding of
how WF uses code generation to produce classes from workflow markup, and how
this generated code can combine with our hand‑written code to produce a workflow
type. This chapter will provide the fundamental knowledge needed to understand
how WF operates during the compilation phase.

In Chapter 3, we will turn our attention to sequential workflows. We will examine the
SequenceActivity and learn about the events fired by the workflow runtime during
the life of a workflow instance. Using Visual Studio, we will build workflows that

Preface

[�]

accept parameters and communicate with a host process by invoking methods and
listening for events. The chapter concludes with a workflow example that raises an
exception and uses a fault handler.

Chapter 4 examines each activity in the WF base activity library. We will look at the
control flow activities, communication activities, and transaction-oriented activities.
The chapter also examines web service activities, rule-centric activities, and state
activities. The goal of this chapter is to make us aware of all the capabilities provided
by the base activity library, with an eye towards understanding how each activity
can solve a particular problem.

With an understanding of what is available in the base activity library, we can
look at building our own custom activities in Chapter 5. This chapter examines the
motivations for building custom activities, and provides examples of building a
custom activity using both a compositional approach and a derivation approach.
We'll see how to build a custom validator and designer for our activity, and also
understand the advantages of using dependency properties. The chapter ends by
covering the execution context, which we must understand to build robust activities.

Chapter 6 covers the workflow runtime, workflow diagnostics, and the out‑of‑the‑box
services provided for WF by Microsoft. The chapter demonstrates how to configure
services both declaratively and programmatically. We'll see examples of how to use
a scheduling service, persistence service, and tracking service. The chapter provides
enough information to allow a developer to select and configure the services needed
for a wide variety of scenarios and environments.

Chapter 7 focuses on building event‑driven workflows using state machines. We'll
see how WF models the traditional state machine using activities, and we will build
a workflow to handle external events and react with state transitions. We'll also
see how to track and examine the history of state machine execution. The chapter
ends with an examination of a hierarchical state machine, which provides all the
knowledge we need to tackle tough problems with event‑driven workflows.

Chapter 8 is dedicated to workflow communications. The chapter explains how
to use correlated local services for communication with a host process, and web
service activities for communication across a network. By the end of the chapter
we'll uncover the queuing service that is used behind the scenes of a workflow to
coordinate and deliver messages.

Finally, Chapter 9 is about rules and conditions in Windows Workflow. This
discusses the role of business rules in software development and provides examples
of how WF's rules engine can take away some of the burden of rule development.
The chapter takes an in-depth look at rule execution in the PolicyActivity, and
recording diagnostic information about rule evaluation. We'll come away with the
knowledge we need to build rule‑based solutions using Windows Workflow.

Preface

[�]

What You Need for This Book
Windows Workflow Foundation is one part of the .NET 3.0 framework. To run
Windows Workflow, you'll need to download and install the .NET 3.0 redistributable
(see the links below):

.NET 3.0 (x86): http://go.microsoft.com/fwlink/?LinkID=70848

.NET 3.0 (x64): http://go.microsoft.com/fwlink/?LinkID=70849

Visual Studio 2005 extensions for .NET Framework 3.0 (Windows
Workflow Foundation):

http://www.microsoft.com/downloads/details.aspx?FamilyId=
5D61409E-1FA3-48CF-8023-E8F38E709BA6&displaylang=en

The .NET 3.0 runtime requires Windows Server 2003 SP1, Windows XP SP2, or
Windows Vista. To develop Windows Workflow solutions you'll need to download
the Visual Studio 2005 extensions for .NET Framework 3.0.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows:

"����The codeActivity1_ExecuteCode method is here and waiting for us to provide an
implementation�"

A block of code will be set as follows:

using System;
using System.Workflow.Activities;

namespace chapter2_library
{
 public sealed �� partial��� class PureCode: SequentialWorkflowActivity
 {
 public PureCode()
 {
 InitializeComponent();
 }

 }

Preface

[�]

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

using System;
using System.Workflow.Activities;

namespace chapter2_library
{
 public sealed �� partial��� class PureCode: SequentialWorkflowActivity
 {
 public PureCode()

 {

 InitializeComponent();

 }

 }
}

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"Right-click the workflow and select the Delete option".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

Preface

[�]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of this
book. If you find any errata, report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the Submit Errata link, and entering the
details of your errata. Once your errata have been verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Qu�������estio��ns
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Hello, Workflow
…thoughts arrive like butterflies — Gossard / Vedder

Windows Workflow might be the most significant piece of middleware to arrive on
the Windows platform since COM+ and the Distributed Transaction Coordinator.
The difference is, not every application needs a distributed transaction, but nearly
every application does have a workflow encoded inside. To understand the types
of problems Windows Workflow is designed to solve, let's talk about workflow in a
generic sense.

What is a workflow? A simple definition would say a workflow is the series of steps,
decisions, and rules needed to complete a specific task. Think of the workflow that
takes place when you order food at the local pizza shop. You tell the cashier the
type of pizza you want. The cashier passes this information to the cook, who gathers
ingredients and puts a pizza in the oven. The cook hands a finished pizza to the
cashier, who collects payment and completes the workflow by handing over your
pizza. The work flows, to the cashier, then to the cook, and then back again.

During each of these steps, all parties are also evaluating rules and making decisions.
Before accepting the order, the cook has to compare the order against the ingredients
in stock. The cashier has to validate and process any coupons you might present, and
notify the manager if you pay with a counterfeit looking bill.

Not every workflow has to involve humans (which is good, because humans
complicate even the simplest process). A workflow can take place between
two distributed software applications. For example, two content management
applications might need to follow a specific set of steps and rules when
synchronizing content in the middle of the night.

Most workflows are stateful, and often run for a relatively long time. Hopefully, your
pizza will be ready within 30 minutes. During those 30 minutes, state information
about your order, like the toppings you selected, has to be available. A different

Hello, Workflow

[�]

workflow happens when the pizza shop orders cheese. The cheese supplier might
not deliver the mozzarella for 30 hours, and the pizza shop may not pay the cheese
supplier for 30 days. During those 30 days, something needs to maintain the state of
the workflow for a purchase.

A workflow may spend a large portion of its lifetime waiting for events to happen in
the world around it. A workflow may be idle when waiting for a delivery, or waiting
for a payment, or waiting for a pizza to finish in the oven. During these wait times,
the workflow is idle and no resources are required by the workflow.

A workflow, then, is a series of steps to finish a task. A workflow is often long
running and stateful, and often needs to wait on events and interact with humans.
You can see workflows everywhere you look in the world. As software developers,
we often have to codify the workflows around us into software applications.

Building Workflow Solutions
We've all been involved with software projects that try to improve a business
process. The process might have involved pizza orders, or financial transactions, or
health care. Invariably, the word workflow will arise as we talk about these projects.
While the workflow might sound simple, we know the devil is always in the details.
We'll need database tables and data access classes to manage the workflow state.
We'll need components to send emails and components to wait for messages to
arrive in a queue. We will also need to express the workflow itself for the computer
to execute. Let's look at a theoretical implementation of a workflow:

// The workflow for a newly submitted Purchase Order
class PurchaseOrderWorkflow
{
 public void Execute(PurchaseOrder order)
 {
 WaitForManagerApproval(order);
 NotifyPurchaseManager(order);
 WaitForGoods(order);
 }

	 …

}

Assuming we have definitions for the three methods inside of Execute, can a
workflow really look this simple? The answer is no. We'll have to add code for
exception handling, logging, and diagnostics. We'll need to raise events and provide
hooks to track and cancel a running workflow. Also, this workflow will be idle and
waiting for an external event to occur, like the arrival of the purchased goods, for the

Chapter 1

[�]

majority of the time. We can't expect to block a running application thread for days
or weeks while waiting for a delivery. We'll need to provide a mechanism to save
the workflow's state of execution to a persistent data store and remove the running
workflow instance from memory. When a significant event occurs, we'll need to
restore the workflow state and resume execution.

Unfortunately, we will have so much code in and around the workflow that we will
lose sight of the workflow itself. All the supporting code will hide the process we
are trying to model. A non-technical businessperson will never be able to look at the
code and see the workflow. A developer will need to dig through the code to find the
workflow inside.

An improved workflow design will try to separate the definition of a workflow from
the engine and supporting code that executes the workflow. This type of approach
allows a developer, or even a businessperson, to express what the workflow should
be, while the workflow engine takes care of how to execute the workflow. These days,
many workflow solutions define workflows inside the loving embrace of angled
brackets. Let's look at some theoretical XML for a workflow definition:

<Workflow Name="PurchaseOrderWorkflow">
	 <Steps>
		 <WaitForTask Event="ManagerApproval"/>
		 <NotifyTask Target="PurchaseManager"/>
		 <WaitForTask Event="Delivery"/>
	 </Steps>
	 <Parameters>
		 <Parameter Type="PurchaseOrder" Name="order"/>
	 </Parameters>
</Workflow>

Let's ask the question again — can a workflow really look this simple? The answer
is yes; what we will need is a workflow engine that understands this XML, and can
transform the XML into instructions for the computer. The engine will include all the
required features like exception handling, tracking, and enabling cancellations.

Hello, Workflow

[10]

The C# code we saw earlier is an example of imperative
programming. With imperative programming, we describe
how to perform a task by providing a series of instructions
to execute. The XML markup above is an example of
declarative programming. With declarative programming,
we describe what the task looks like, and let other software
determine the steps required to complete the task. Most of
the commercial workflow solutions on the market allow a
declarative definition of workflow, because the declarative
approach doesn't become cluttered with exception
handling, event raising, and other lower-level details.

One of the benefits to using XML is the large number of tools with the ability to
read, modify, create, and transform XML. XML is tool-able. Compared to parsing C#
code, it would be relatively easy to parse the XML and generate a visualization of the
workflow using blocks and arrows. Conversely, we could let a business user connect
blocks together in a visual designer, and generate XML from a diagram.

Let's think about what we want in a workflow solution. We want to specify
workflows in a declarative manner, perhaps with the aid of a visual designer. We
want to feed workflow definitions into a workflow engine. The engine will manage
errors, events, tracking, activation, and de-activation.

Enter Windows Workflow Foundation.

A Windows Workflow Tour
Microsoft's Windows Workflow Foundation is one piece of the new .NET 3.0
platform. The other major additions in .NET 3.0 include Windows Presentation
Foundation, or WPF, and Windows Communication Foundation, or WCF. Microsoft
will support Windows Workflow (WF) on Windows XP, Windows Server 2003, and
Windows Vista.

Support for current and future Microsoft platforms means WF could reach near
ubiquity over time. We can use WF in smart client applications, and in simple
console-mode programs. We can also use WF in server-side applications, including
Windows services, and ASP.NET web applications and web services. WF will
make an appearance in several of Microsoft's own products, including Windows
SharePoint Services and Microsoft Biztalk Server. We will now look at an overview
of the essential features of Windows Workflow.

Chapter 1

[11]

Activities
The primary building block in Windows Workflow is the activity. Activities compose
the steps, or tasks in a workflow, and define the workflow. We can arrange activities
into a hierarchy and feed activities to the workflow engine as instructions to execute.
The activities can direct workflows involving both software and humans.

All activities in WF derive from an Activity base class. The Activity class defines
operations common to all activities in a workflow, like Execute and Cancel. The
class also defines common properties, like Name and Parent, as well as common
events like Executing and Closed (the Closed event fires when an Activity is
finished executing). The screenshot below shows the Activity class in the Visual
Studio 2005 class designer:

WF ships with a set of ready-made activities in the base activity library. The
primitive activities in the library provide a foundation to build upon, and include
control‑flow operations, like the IfElseActivity and the WhileActivity. The base
activity library also includes activities to wait for events, to invoke web services, to
execute a rules engine, and more.

Custom Activities
Windows Workflow allows developers to extend the functionality of the base activity
library by creating custom activities to solve problems in their specific domain.
For instance, pizza delivery workflows could benefit from custom activities like
SendOrderToKitchen or NotifyCustomer.

Hello, Workflow

[12]

All custom activities will also ultimately derive from the base Activity class.
The workflow engine makes no special distinction between activities written by
Microsoft and custom activities written by third parties.

We can use custom activities to create domain‑specific languages for building
workflow solutions. A domain‑specific language can greatly simplify a problem
space. For instance, a SendOrderToKitchen custom activity could encapsulate a
web service call and other processing logic inside. This activity is obviously specific
to the restaurant problem domain. A developer will be more productive working
with this higher-level abstraction than with the primitive activities in the base
activity library. Even a restaurant manager will understand SendOrderToKitchen
and might arrange the activity in a visual workflow designer. It will be difficult
to find a restaurant manger who feels comfortable arranging WhileActivity and
InvokeWebServiceActivity objects in a workflow designer.

C#, VB.NET, and XML are general-purpose languages and
have the ability to solve a wide array of different problems.
We can use C# to develop solutions for pizza restaurants as
well as hospitals, and the language works equally well in
either domain. A domain-specific language excels at solving
problems in a particular area. A domain-specific language
for restaurant workflow would boost productivity when
writing software for a restaurant, but would not be as
effective when writing software for a hospital.

Visual Studio 2005 Extensions
Microsoft also provides the Microsoft Visual Studio 2005 Extensions for Windows
Workflow. These extensions plug into Visual Studio to provide a number of features,
including a visual designer for constructing workflows. A screenshot of the visual
designer is shown on the next page.

Chapter 1

[13]

The designer uses the same windows we've come to love as Windows and web
form developers. The Toolbox window will list the activities available to drag onto
the design surface. We can add our own custom activities to the Toolbox. Once
an activity is on the design surface, the Properties window will list the activity's
properties that we can configure, and the events we can handle. The Toolbox
window is shown below:

Windows Workflow and XAML
The WF designer can generate C# and Visual Basic code to represent our
workflow. The designer can also read and write eX���������������������������� tensible Application Markup
Language��� (XAML, pronounced zammel). ������������������������������������� XAML files are valid XML files. XAML

Hello, Workflow

[14]

brings a declarative programming model to Windows Workflow. Here is the XAML
generated by the designer for the workflow we saw earlier:

<SequentialWorkflowActivity
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow"
 x:Class="HelloWorld.HellowWorldWorkflow"
 >

 <CodeActivity
 x:Name="codeActivity1"
 ExecuteCode="codeActivity1_ExecuteCode_1" />

</SequentialWorkflowActivity>

Our workflow is trivial and contains only a single activity inside—a CodeActivity.
When the workflow engine executes the CodeActivity, the CodeActivity will
invoke a method specified by the ExecuteCode attribute. Our XML also includes
special XML namespace directives. We'll cover XAML and these namespaces
in Chapter 2.

XAML is not a technology specific to Windows Workflow. As an "extensible
application" markup language, XAML is also present in Microsoft's presentation
framework—Windows Presentation Foundation (WPF). In WPF, XAML declaratively
constructs a rich user interface consisting of not only buttons and labels, but also
animation storyboards and data templates.

One important capability of declarative XAML is the ability to join forces with
imperative code in a partial class. Partial classes, introduced in .NET 2.0, are a
feature available to both Visual Basic and C# developers. Partial classes allow the
definition of a class to span more than one file. The XAML above will transform
into a partial class by the name of HelloWorldWorkflow. We control the name of
the class from XAML with the x:Name attribute in the root node. We can add
members to the generated class by defining a class with the same name and with
the partial keyword.

public partial class HelloWorldWorkflow
 : SequentialWorkflowActivity
{
 private void codeActivity1_ExecuteCode_1(object sender,
 EventArgs e)
 {
 // ...
 }
}

Chapter 1

[15]

In this example, we are adding the codeActivity1_ExecuteCode_1 method as a
member of the same class (HelloWorldWorkflow) produced by the XAML.

WF Validation and Debugging
Another job of the workflow designer is to provide validation feedback for the
activities in a workflow. Each activity can define its own design-time and run-time
validation. The designer will flag an activity with a red exclamation point if the
activity raises validation errors. For example, a CodeActivity will display a red
exclamation point until we set the ExecuteCode property. Without a method to
invoke, the CodeActivity is useless, but the validation catches this problem early
and provides visual feedback.

The designer also provides debugging features. We can set breakpoints on an
activity in the workflow designer. When execution stops, we can look at the Call
Stack window to see the activities previously executed in the workflow instance.
The debugger commands Step In, Step Out, and Step Over all work intuitively;
for instance, the Step In command will move to the first activity inside a composite
activity, while Step Over executes the entire composite activity and moves to the
next sibling.

Designer Looks
The workflow designer allows customization of its design surface via themes. A
theme defines the background colors, fonts, grid lines, and border styles to use on
the design surface. We can even specify color and border styles for specific activity
types. Through Visual Studio, we can create new themes, or modify existing themes.

All this styling ability isn't just to make the designer look pretty in Visual Studio,
however. The WF designer is a component we can host inside our own applications.
The ability to host the designer opens a number of interesting possibilities. First, we
can host the designer and allow the non-developer types (a.k.a. business people)
to design and edit workflows. By providing custom activities, we can match the
vocabulary needed to build a workflow with a vocabulary the business people will
understand (a domain-specific language). By providing custom themes, we can
match the designer look with the look of our application.

The Windows Workflow Runtime
One perspective for Window Workflow is to view the workflow activities as
instructions, or opcodes, for a workflow processor to execute. In Windows
Workflow, the processor is in the WF runtime. To start a workflow party, we first
need a host for the runtime and workflow services.

Hello, Workflow

[16]

Hosting the Windows Workflow Runtime
Windows Workflow is not a stand-alone application. Like ASP.NET, WF lives
inside a handful of assemblies (most notably for this topic, the System.Workflow.
Runtime.dll assembly). Like the ASP.NET runtime, WF needs a host process to
load, initialize, and start its runtime before anything interesting can happen. Unlike
the traditional server-side usage of ASP.NET, however, WF will be useful in a
variety of different hosts. We can host WF in a smart client application, a console
application, or a Windows service, for instance.

The class diagram in the screenshot below features the primary classes we use to
execute workflows in WF.

Creating an instance of the WorkflowRuntime class and calling StartRuntime is
all we need to spin up the workflow execution environment. WorkflowRuntime
defines methods that allow customization of the execution environment. The class
also defines events we can listen for during execution. The runtime will fire an event
when workflows finish execution, abort, turn idle, and more.

Once we've created an instance of the runtime, we can create workflows with
the CreateWorkflow method. The CreateWorkflow method returns an object of
type WorkflowInstance. The WorkflowInstance class represents an individual
workflow. The Start method on the workflow instance object will begin the
execution of a workflow. If an exception occurs, the workflow will invoke the
Terminate method (which leads to the runtime raising a WorkflowTerminated
event). A typical sequence of calls is shown in the screenshot next.

Chapter 1

[17]

The WorkflowRuntime and WorkflowInstance classes are arguably the most
important classes needed at run time, but they are not the only classes available.
Other classes inside the WF assemblies provide important services to the workflow
runtime. Chapter 5 will cover these services in detail, but the following provides a
brief introduction.

Runtime Services
The WorkflowRuntime class provides only the basic features for executing
workflows. Earlier, we mentioned important features we'd like to see in a workflow
engine, like the ability to track active workflows and deactivate idle workflows.
Don't worry, these features are available through an extensibility mechanism of
WorkflowRuntime — the AddService method.

AddService allows us to make one or more services available to the runtime.
These services might be custom services we've written specifically for our domain,
like a custom scheduling service, or they might be services already written by
Microsoft and included with WF. Let's continue our tour by looking at the services
already available.

Hello, Workflow

[18]

Scheduling Services
A scheduling service controls threads the runtime needs to execute workflows. The
DefaultWorkflowSchedulerService creates new threads to execute workflows.
Because the threads are separate from the host application, the workflows do not
block any application threads and execute asynchronously. The maximum number of
simultaneously executing workflows is configurable.

A second scheduling service, the ManualWorkflowSchedulerService, is available
when the host application is willing to donate threads to the workflow runtime.
Donating a thread to the runtime is a useful technique in server‑side applications,
like ASP.NET web applications and web services. Server-side applications typically
pull a thread from a pool to service each client request. It makes sense to loan the
thread to the WF runtime, and let the runtime execute the workflow synchronously
on the existing request thread instead of using two threads per request, which could
reduce scalability.

As with all services in Windows Workflow, you can define your own scheduling
service if the built-in services do not fit your requirements.

Transaction Services
A transaction service, as the name might imply, allows the runtime to keep the
internal state of a workflow consistent with the state in a durable store, like
a relational database. The default transactional service is an instance of the
DefaultWorkflowTransactionService class. Activities inside a running instance of
a workflow, and the services operating on the same instance, can all share the same
transaction context.

WF relies on the implementation of transactions in .NET's System.Transactions
namespace. The Transaction class offers a lightweight, auto-enlisting, and
promotable transaction. The transaction can start as a local transaction, and later
the runtime can promote the transaction to a heavyweight, distributed transaction
if needed.

Persistence Services
A persistence service is responsible for saving the state of a workflow to a durable
store. The SqlWorkflowPersistenceService service saves the state of a workflow
into a SQL Server database. Persistence is required for long‑running workflows,
because we can't have an invoice-processing workflow in memory for 30 days till
the customer's payment arrives. Instead, the runtime can persist the state of the
workflow to a durable store and unload the instance from memory. In 30 days
(or hopefully, less), the runtime can reload the workflow instance and resume
processing. The WF runtime will automatically persist a workflow that is idle or
suspended when a persistence service is present.

Chapter 1

[19]

The SqlWorkflowPersistenceService will work with SQL Server 2000 or any later
version of Microsoft SQL Server, including the free MSDE and Express editions. Of
course, we'll need a database schema that the persistence service understands. In
Chapter 5�� we will see how to use the T-SQL installation scripts provided by the .NET
3.0 installation.

Tracking Services
While a scheduling service is responsible for selecting threads for a workflow to
run on, a tracking service is responsible for monitoring and recording information
about the execution of a workflow. A tracking service will tell the runtime the type
of information it wants to know about workflows using a tracking profile. Once the
service establishes a profile, the service can open a tracking channel to receive events
and data. ��� Chapter 5�� includes more details on tracking profiles and channels.

WF includes a SqlTrackingService class that stores tracking data into a SQL Server
database. The service will use the previously discussed transactional service to
ensure the tracking data for a workflow is consistent with the state of the workflow
it's tracking. The runtime does not start a tracking service by default, but we can
programmatically add a tracking service (or configure a tracking service with an
application configuration file) for the runtime to use.

Now we've covered all the basic features of WF, so let's put the software to work.

Our First Workflow
Maybe you've had one of those product managers who is always at your desk,
asking "are you done, yet?" In this section, we will replace the annoying project
manager with a trivial Windows Workflow program. The sample isn't meant to
demonstrate all the capabilities of the platform, but give a general feel for creating
and running a workflow with WF.

Before we can begin, we'll need to download and install the .NET 3.0 framework. The
installation program is available from http://netfx3.com. Supported development
tools for the .NET 3.0 framework include all editions of Visual Studio 2005. We'll also
need to download and install Visual Studio 2005 Extensions for Windows Workflow
Foundation. The extensions are also available from http://netfx3.com. The
extensions are not compatible with the Express editions of Visual Studio 2005.

First, we'll use Visual Studio to create a new Workflow project (File | New Project).
We'll choose C# as our language and select the Sequential Workflow Console
Application template (see the screenshot on the next page). The template gives us a
project with references to all the correct WF assemblies, an empty workflow, and a
Program.cs file to drive the workflow. Right-click the workflow and select Delete so
we can start a workflow from scratch.

Hello, Workflow

[20]

We can now right-click the project file in the Solution Explorer window and select
Add New Item. From the list of items we'll choose Sequential Workflow (with code
separation) and give the item the name of workflow1.xoml (see screenshot below).
This XOML file will contain the XAML definition of our workflow.

Chapter 1

[21]

If we click to expand the node containing Workflow1.xoml, we will find a C# code-
beside file (Workflow1.xoml.cs) containing a partial class. As we mentioned earlier,
the partial class will combine with the class generated from the XAML to produce
a single type. Let's modify the class in Workflow1.xoml.cs by adding an IsFixed
property with a backing field, as shown below:

public partial class Workflow1 : SequentialWorkflowActivity
{
 private bool _isFixed;
 public bool IsFixed
 {
 get { return _isFixed; }
 set { _isFixed = value; }
 }
}

If we double-click the .xoml file, the designer will appear. At this point we would
want to open the Toolbox window if is not open (Ctrl+Alt+X). We can drag a While
activity from the Toolbox and drop the activity between the start and end point
of our workflow. The While Activity executes a child task until some condition is
met. Our next step is to drag a Code activity from the Toolbox into the center of the
While activity. At this point, our designer should resemble the following screenshot:

Notice both activities display a red exclamation point. The activities are failing their
validation checks. We can hover the mouse cursor over the exclamation points and
open a smart tag to view the validation error. If we tried to compile the program we'd
see these same validation errors as compilation errors. We'll fix these errors now.

Hello, Workflow

[22]

The Code activity requires us to assign an event handler for the ExecuteCode event.
We can set the event by opening the Properties window (F4) and clicking the Code
activity to set focus. Double-clicking in the empty space beside the ExecuteCode
property will send us into the code-beside file and generate a new event handler. We
can place the following code into the event handler. This code will ask the user if a
bug is fixed, and then read a key press. If the user presses the 'y' key, the code will
set the _isFixed field to true.

private void codeActivity1_ExecuteCode(object sender, EventArgs e)
{
 Console.WriteLine("Is the bug fixed?");

 Char answer = Console.ReadKey().KeyChar;
 answer = Char.ToLower(answer);

 if (answer == 'y')
 {
 _isFixed = true;
 }
 else
 {
 Console.WriteLine();
 Console.WriteLine("Get back to work!");
 Console.WriteLine();
 }
}	

The Code activity should now pass validation, so we can turn our attention to
the While activity. A While activity requires a valid Condition property. Several
activities in the base activity library work with conditions, including the IfElse,
ConditionedActivityGroup, and Replicator activities. Chapter 9 will cover
conditions and rules in more detail.

We can set the Condition property of our activity by opening the drop‑down list
beside the Condition property in the Properties window. We have the choice of
selecting a CodeCondition or a RuleConditionReference. These choices represent
the two techniques available to express a condition, the first being with code (a
method that returns a Boolean value), the second being with a rule. Let's select the
RuleConditionReference. A rule condition is a named expression that evaluates to
true or false, and can live in an external .rules file for easy maintenance. A plus
sign appears beside the Condition property, and we can click the sign to expand the
property editor.

When the Condition property expands, the Property window gives us the ability to
set a ConditionName and an Expression. Clicking on the ellipsis (…) button in the
Condition name will launch a Select Condition dialog box.

Chapter 1

[23]

Clicking the New Condition... button will launch the Rule Condition Editor.

We want the While activity to loop until the bug is fixed. Our rule is !this.
IsFixed. Once we've entered the condition (notice the editor provides IntelliSense),
we can click OK. When we return to the Select Condition dialog box, we can
see the editor has given our condition the name of Condition1. We should select
Condition1 and press OK. The While activity should now have a ConditionName
and Expression set, and pass validation.

Now we need to open the Program.cs file, which contains the method Main—the
entry point for our Console application. We need to host the WF runtime and ask the
runtime to execute our workflow. The item template for a workflow project provides
all the boilerplate code we need. Let's review the code:

Hello, Workflow

[24]

class Program
{
 static void Main(string[] args)
 {
 WorkflowRuntime workflowRuntime = new WorkflowRuntime();

 workflowRuntime.WorkflowCompleted +=
 new EventHandler<WorkflowCompletedEventArgs>
 (workflowRuntime_WorkflowCompleted);

 workflowRuntime.WorkflowTerminated +=
 new EventHandler<WorkflowTerminatedEventArgs>
 (workflowRuntime_WorkflowTerminated);

 WorkflowInstance instance;
 instance = workflowRuntime.CreateWorkflow(typeof(Workflow1));
 instance.Start();

 waitHandle.WaitOne();
 }

 static void workflowRuntime_WorkflowTerminated(object sender,
 WorkflowTerminatedEventArgs e)
 {
 Console.WriteLine(e.Exception.Message);
 waitHandle.Set();
 }

 static void workflowRuntime_WorkflowCompleted(object sender,
 WorkflowCompletedEventArgs e)
 {
 waitHandle.Set();
 }

 static AutoResetEvent waitHandle = new AutoResetEvent(false);
}

The first step is to instantiate a WorkflowRuntime instance. The code wires up
event handlers to the runtime so we know if a workflow terminates (because of
an exception), or completes successfully. The code instantiates our bug-fixing
workflow using the CreateWorkflow method, passing the type of our workflow.
Since the workflow engine executes our workflow asynchronously, we need to block
our thread on an AutoResetEvent object and wait for the workflow to complete
(otherwise, the console mode program would exit before the workflow gets an
opportunity to run). An AutoResetEvent object will block a thread until the object is
in a signaled state, which we do with the Set event in the event handlers.

Chapter 1

[25]

We can now build our workflow solution and run the executable from the
command line.

Summary
Software developers have been implementing workflows to model business
processes since the beginning of time. During this time, we've learned that
workflows can be long-running and often require input from humans. Building a
robust workflow to meet these challenges is a daunting task. An ideal paradigm
for building workflows is to separate the workflow definition from the engine that
executes the workflow. 	

Once we've separated workflow definitions from the execution engine, we can
go on to build workflow components to create a domain‑specific language. A
businessperson has the ability to understand the domain‑specific language, and
can understand a workflow without seeing the clutter of exception handling and
workflow tracking.

Windows Workflow brings a workflow engine and workflow development tools to
Microsoft platforms. The instructions for the WF engine are activities, and we can
arrange these activities using a graphical designer, XAML, code, or a combination
of the three. WF provides the services we need for a workflow engine, including
persistence, threading, and transaction services. The future looks bright for building
workflow solutions.

Authoring Workflows
The workflow designer hosted in Visual Studio 2005 makes workflow design a
drag-and-drop operation. In this chapter, we will build a workflow with the
designer, and then take a detailed look at what happens behind the scenes.
Ultimately, the workflow definition we see in the designer becomes a type in a .NET
assembly. Because Windows Workflow is flexible, there are several paths available
for the workflow to journey from designer to compiled type.

One approach is to author our workflows using a purely declarative style (using only
XAML). We can also author workflows using a purely imperative style (using only
C# or Visual Basic code). Finally, we can use a combination of XAML and code.

When a workflow is executing, these different approaches won't have a noticeable
impact. When we are building workflows, however, the authoring styles offer
various strengths and weaknesses we can align with our needs. We will examine
the pros and cons of the available approaches and see how a workflow moves from
design to executable instructions.

Pure Code
Building a workflow with a pure code approach means we are only using C# or
Visual Basic code to define the workflow. There is no XAML involved. This doesn't
mean we have to write all the code ourselves. Many designers in Visual Studio, like
the Windows forms designer, have been generating C# and Visual Basic code for
years. The workflow designer has the ability to generate code for us. We will want to
combine the designer-generated code with our own code to build a workflow.

Authoring Workflows

[28]

Pure Code and Visual Studio
The Visual Studio 2005 Extensions for Windows Workflow package will add project
and item templates into Visual Studio. These item templates provide a starting point
for building a workflow project, a workflow, or an activity.

To use an item template we merely need to right-click a project and select Add
| New Item. One of the item templates appearing in the Add New Item dialog
box sets up the files and code needed to support a pure code approach. This item
template is the Sequential Workflow (code) template. Other item templates appear
in the screenshot below:

When we add a workflow to our project using the Sequential Workflow (code)
template, we don't add just a single source code file. If we create a new workflow
from the template, and give the workflow the name of PureCode, the template will
add two files to the project: a PureCode.cs file and a PureCode.Designer.cs file.
PureCode.cs is a file we can edit. The PureCode.Designer.cs file contains code the
graphical designer will edit.

With our PureCode workflow in the designer window, we can drop a CodeActivity
from the Toolbox window into the designer. We can then use the Properties window
to assign a method for the ExecuteCode event. Select the CodeActivity, and then
click the Generate Handlers hyperlink in the Properties window to generate a
default handler for ExecuteCode.

Chapter 2

[29]

All the steps listed above will produce the following code inside of PureCode.cs.

using System;
using System.Workflow.Activities;

namespace chapter2_library
{
 public sealed partial class PureCode: SequentialWorkflowActivity
 {
 public PureCode()
 {
 InitializeComponent();
 }

 private void codeActivity1_ExecuteCode(object sender,

 EventArgs e)

 {

 }

 }
}

PureCode.cs is our file to edit. The codeActivity1_ExecuteCode method is here
and waiting for us to provide an implementation. Notice the constructor calls a
method by the name of InitializeComponent, but this method is not present in the
PureCode.cs file. As it turns out, the InitializeComponent method is a member
of the PureCode class, but we will find its definition in another file. This is the magic
provided by the partial keyword modifier on our class. The partial keyword
allows us to split a class definition across multiple source code files.

Authoring Workflows

[30]

The rest of the class definition for our PureCode workflow lives in
PureCode.Designer.cs. We typically would never need to look at or edit this
class, because the workflow designer is responsible for generating code inside
the file. Here is what the designer generates for this workflow.

using System;
using System.Workflow.Activities;

namespace chapter2_library
{
 public sealed partial class PureCode
 {
 #region Designer generated code

 private void InitializeComponent()
 {
 this.CanModifyActivities = true;
 this.codeActivity1 = new
 System.Workflow.Activities.CodeActivity();
 //
 // codeActivity1
 //
 this.codeActivity1.Name = "codeActivity1";
 this.codeActivity1.ExecuteCode +=
 new System.EventHandler(
 this.codeActivity1_ExecuteCode);
 //
 // PureCode
 //
 this.Activities.Add(this.codeActivity1);
 this.Name = "PureCode";
 this.CanModifyActivities = false;

 }

 #endregion

 private CodeActivity codeActivity1;

 }
}

The InitializeComponent method appears in this half of the partial class definition
and contains the code to set up the activities in our workflow. In this case, we have
only a single Code activity in our workflow. The code constructs the activity and
adds the activity as a child of the workflow. The class also defines private fields for
each activity in our workflow — in this case only codeActivity1. We can control
the names of the activity fields by setting the Name property of an activity in the
Property window.

Chapter 2

[31]

When we build our project, the C# compiler will merge the two partial class
definitions into a single type. The new type will have the name of PureCode and
contain both the InitializeComponent and codeActivity1_ExecuteCode methods
as shown in the figure below:

With the pure code approach of Visual Studio, each workflow is the combination of
a designer-managed code file, and a developer-managed code file. This is a perfectly
reasonable approach if we construct all of our workflows using the designer. Of
course, it would also be possible to write all that code by hand, or with a different tool.
The ultimate goal is to create a hierarchical tree of activities inside our workflow. Some
of the alternative approaches to defining workflows are more amiable to outside tools.

Objects and Their Relationships
A workflow ultimately becomes a group of managed objects in memory. The trick is
to arrange the objects in a relationship so they can perform useful work. This trick isn't
specific to workflow software. Consider some code from a Windows application:

button1 = new System.Windows.Forms.Button();
button1.Location = new System.Drawing.Point(13, 13);
button1.Name = "button1";
button1.Size = new System.Drawing.Size(75, 23);
button1.Text = "Click Me!";
this.Controls.Add(this.button1);

This code is similar to the code we saw in the InitializeComponent method
the workflow designer created earlier. Instead of arranging activities, this code is
arranging user interface controls. The code creates a Button object and sets some
properties so the button will appear visually appealing. This code lives inside a
class derived from System.Windows.Forms.Form. The most important line of
code is adding the button object to the form's Controls collection: this.Controls.
Add(this.button1). If we never established a relationship between the Form object
and the Button object, the button would never appear on the form.

Authoring Workflows

[32]

We generally don't write code like this ourselves, but we rely on a designer to
generate the code. The designer-generated code has two goals. The first goal is to
instantiate objects and set their properties to an initial value. The second goal is
to establish relationships between the new objects and construct the relationships
between the objects.

The ASP.NET designer-generated code for a web form has the same goals, but looks
a bit different:

<asp:Panel runat="server" ID="panel1">
 <asp:Button runat="server" ID="button1" Text="Click Me!" />
</asp:Panel>

The ASP.NET designer produces declarative mark-up instead of imperative
code. Arguably, the primary reason for using declarative mark-up is the ability to
intertwine .NET objects with HTML, and HTML is already a declarative language.
However, using a declarative style increases readability of the generated code. At a
glance, we can see the Button object is a child of the Panel object.

Both Windows Presentation Foundation and Windows Workflow use the eXtensible
Application Markup Language (XAML), which takes the declarative style even further.

<Grid>
	 <Button Grid.Row="0" Grid.Column="0">
		 Click Me!
	 </Button>		
</Grid>

XAML has the advantage of being valid XML. We are now looking at a declarative
style that is human readable (it's easy to see the Button as a child of the Grid
control), and tool-able. Tool-able meaning we don't have to rely on custom designers
and compilers to read, write, modify, and parse the mark-up. We could write a
custom tool for special tasks using the wide variety of XML technologies available,
like XPath, XQuery, XSLT, and the XML DOM.

In the next section, we will look at using a purely declarative approach to building
workflows using XAML.

Pure XAML
Here is the start of a workflow defined using only XAML.

<SequentialWorkflowActivity
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow"
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Chapter 2

[33]

 x:Class="MyWorkflow"
 >

 <WhileActivity>
 <CodeActivity />
 </WhileActivity>

</SequentialWorkflowActivity>

The root element is a SequentialWorkflowActivity. WF provides the
SequentialWorkflowActivity and StateMachineWorkflowActivity classes
primarily to serve as root level activities. These classes manage the execution of their
children using different styles. The SequentialWorkflowActivity serially executes
its children until the last activity completes. The order of activities inside a sequential
workflow is important, as the order will determine when the activity executes. We'll
look at the StateMachineWorkflowActivity in detail when we reach Chapter 7.

The file extension for a XAML file containing workflow
markup is .xoml.

Our workflow consists of a WhileActivity with a CodeActivity inside. The XAML
is an XML representation of the tree of objects we want to create. The XAML sets
up a CodeActivity to execute inside of a loop. We've yet to define the code, or the
while condition, so the workflow will not pass validation as yet.

We talk about an XML element like <WhileActivity> as if the element was a class,
because it is. XAML works by mapping XML to .NET types. Elements map to classes,
and attributes map to properties on those classes. Each XML namespace in XAML
corresponds to one or more .NET namespaces.

Namespaces in XML are similar to namespaces in .NET. Both help to avoid name
collisions when different entities have the same name. Our XAML file brings two
namespaces into scope with the xmlns attribute. The workflow namespace is the
first and default namespace in our XAML, and maps to the CLR namespace System.
Workflow.Activities. The workflow namespace is the default namespace because
there is no prefix for the namespace. The second namespace is the XAML namespace,
which uses an x: prefix.

Authoring Workflows

[34]

The XAML namespace is special because it gives
instructions to the workflow compiler. For instance, the x:
Class attribute tells the workflow compiler the name of a
new Type to create from the workflow definition. When we
run the XAML through the compiler, the result will be an
assembly with a class inside by the name of MyWorkflow.

For now, let's remove the WhileActivity and concentrate on putting together valid
XAML to compile.

<SequentialWorkflowActivity
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="MyWorkflow"
 >

 <CodeActivity ExecuteCode="SayHello" />

 <x:Code>
 <![CDATA[
 private void SayHello(object sender, EventArgs e)
 {
 Console.WriteLine("Hello, workflow!");
 }
]]>
 </x:Code>

</SequentialWorkflowActivity>

We now have a valid workflow because the CodeActivity has an event handler
defined for the ExecuteCode event. Our use of the CodeActivity is atypical. A
CodeActivity would usually inspect and change the workflow state using some
calculations and logic. We are just writing a message to the console. This example
demonstrates how to use in-line code with XAML. The use of in-line code is also
atypical, as many developers like to work with proper classes and consider in-line
code one of the seven deadly sins.

If we really need to write to the console from inside a workflow, we might package
the behavior into a custom activity. A custom activity encapsulates behavior and
state into a component for easy reuse.

Chapter 2

[35]

Using Custom Activities in XAML
A custom activity inherits from System.Workflow.ComponentModel.Activity and
allows us to build workflows using components tailored to our problem domain. To
implement a custom activity we need to override the virtual Execute method. The
following code is a custom activity that can write a message to the console.

using System;
using System.Workflow.ComponentModel;

namespace OdeToCode.WinWF.Activities
{
 public class WriteLineActivity : Activity
 {
 protected override ActivityExecutionStatus Execute
 (ActivityExecutionContext executionContext)
 {
 Console.WriteLine(_message);
 return ActivityExecutionStatus.Closed;
 }

 private string _message;
 public string Message
 {
 get { return _message; }
 set { _message = value; }
 }
 }
}

We've also created a public Message property for our custom activity. We can set
a value for this property in XAML using a Message attribute. If we use this custom
activity from our XAML file, we won't need to use in-line code. Our XAML now
looks like the following:

<SequentialWorkflowActivity
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:otc="http://schemas.OdeToCode.com/WinWF/Activities"

 x:Class="MyWorkflow"
 >

 <otc:WriteLineActivity Message="Hello, workflow!"/>

</SequentialWorkflowActivity>

Authoring Workflows

[36]

Notice we've defined a new XML namespace where our custom activity lives. This
is the http://schemas.OdeToCode.com/WinWF/Activities namespace. How
will the workflow compiler use this namespace to look for the WriteLineActivity
component? The answer is in a piece of assembly-level metadata we include in the
assembly where the WriteLineActivity lives. This metadata provides a map between
the XML namespace and the .NET namespace where our custom activity lives.

[assembly: XmlnsDefinition(
 "http://schemas.OdeToCode.com/WinWF/Activities",
 "OdeToCode.WinWF.Activities")
]

The XAML compiler will look in referenced assemblies for
XmlnsDefinitionAttribute attributes. When it finds the above definition, the
compiler will know to map http://schemas.OdeToCode.com/WinWF/Activities
to the CLR namespace OdeToCode.WinWF.Activities in the assembly where the
attribute resides.

An alternative approach to namespace mapping is to embed
the CLR namespace and assembly name directly in the
XAML. Assuming our custom activity is inside an assembly
by the name of Foo.dll, this approach would look like the
following: xmlns:otc="clr-namespace:OdeToCode.
WinWF.Activities;assembly=Foo". This alternative
approach is useful when we need to use a type inside an
assembly that we do not own, and we can't add metadata to
the assembly. In all other cases, it is better to have the layer
of indirection provided by an XML namespace as in our
earlier example.

Our workflow is almost ready to execute, but first we will need to transform the
XAML into instructions for the CLR.

Compiling Workflows
Windows Workflow provides two compilers for us to use. The first compiler is the
class WorkflowCompiler in the System.Workflow.ComponentModel.Compiler
namespace. The second compiler is a command-line compiler, essentially a console-
mode application wrapper around the WorkflowCompiler class.

The workflow compiler follows a number of steps when it transforms a workflow
definition into a Type. The first step is to validate every activity in the workflow
definition. An activity can define its own validation logic. For example, the

Chapter 2

[37]

CodeActivity will raise a validation error if its ExecuteCode event handler is
empty. After validation, the compiler will generate code (the default language is C#)
into a temporary directory. The generated source code then serves as input to the C#
or Visual Basic.NET compiler for compilation into an assembly.

Compiling with Wfc.exe
The WF command-line compiler goes by the name of wfc.exe—������������ the Windows
Workflow Compiler. The first parameter we will pass is the name of our XOML
file. Let's say we've placed our XAML into a file with the name of purexaml3.
xoml. We will also pass the name of the assembly we want the compiler to produce
(purexaml3.dll) using the -out parameter. If we have any custom activities defined
in additional assemblies, we will need to reference those assemblies using a -r
parameter. The following screenshot shows us referencing an executable assembly
by the name of chapter2_Host.exe:

Voilà! We now have an assembly we can use in a host application. We can
dynamically load the assembly using a call to Type.GetType and passing an
assembly-qualified type name. An assembly-qualified type name includes the name
of the Type and the name of the assembly where the Type lives. The Type name
for our new workflow is MyWorkflow. This is the name we assigned using the x:
Class attribute in the XOML file. The assembly-qualified name will be MyWorkflow,
purexaml3. The following code instantiates and executes the workflow:

using (WorkflowRuntime runtime = new WorkflowRuntime())
using (AutoResetEvent waitHandle = new AutoResetEvent(false))
{
 runtime.WorkflowCompleted += delegate { waitHandle.Set(); };
 runtime.WorkflowTerminated += delegate { waitHandle.Set(); };

 Type workflowType = Type.GetType("MyWorkflow, purexaml3");
 WorkflowInstance instance = runtime.CreateWorkflow(workflowType);
 instance.Start();

 waitHandle.WaitOne();
}

Authoring Workflows

[38]

Remember the workflow executes asynchronously on a thread from the Common
Language Runtime (CLR) thread pool. We will wait for the workflow to finish by
waiting for a signal from an AutoResetEvent event�.

The CLR thread pool manages a group of background
threads for asynchronous operations. Creating a thread is
a relatively expensive operation, but the thread pool can
amortize this cost over the lifetime of an application by
re-using threads across multiple background operations.
The runtime removes a thread from the pool when an
operation is queued to work on a background thread. When
the operation is complete, the runtime returns the thread to
the pool to assign out again in the future.

Compiling with WorkflowCompiler
We can use the WorkflowCompiler and WorkflowCompilerResults classes to
programmatically compile workflow definitions and retrieve a new assembly. The
Wfc.exe uses the WorkflowCompiler class internally to perform a compilation.
These classes are shown in the class diagram below:

Chapter 2

[39]

To use the WorkflowCompiler class, we need to set up a
WorkflowCompilerParameters object. We can use the parameters object to reference
any assemblies containing custom activities.

WorkflowCompiler compiler = new WorkflowCompiler();

WorkflowCompilerParameters parameters;
parameters = new WorkflowCompilerParameters();
parameters.GenerateInMemory = true;
parameters.ReferencedAssemblies.Add("chapter2_Host.exe");

string[] xomlFiles = { @"..\..\purexaml\purexaml3.xoml" };

WorkflowCompilerResults compilerResults;
compilerResults = compiler.Compile(parameters, xomlFiles);

Notice the Compile method accepts an array of string objects, so we can pass
multiple XOML files at once. If the compilation was not successful, the Errors
property of the result will contain details on what went wrong.

if (compilerResults.Errors.Count > 0)
{
 foreach (CompilerError error in compilerResults.Errors)
 {
 Console.WriteLine(error.ErrorText);
 }
}

Running the workflow compiled by the WorkflowCompiler only requires a slight
adjustment to our previous code. Instead of using Type.GetType we will go directly
to the new assembly and ask for the workflow type.

using (WorkflowRuntime runtime = new WorkflowRuntime())
using (AutoResetEvent waitHandle = new AutoResetEvent(false))
{

 runtime.WorkflowCompleted += delegate { waitHandle.Set(); };
 runtime.WorkflowTerminated += delegate { waitHandle.Set(); };

 Type workflowType;
 workflowType =

 compilerResults.CompiledAssembly.GetType("MyWorkflow");

 WorkflowInstance instance = runtime.CreateWorkflow(workflowType);

 instance.Start();

 waitHandle.WaitOne();
}

Authoring Workflows

[40]

Two interesting implementation details are worth mentioning:

First, the WorkflowCompiler creates a new application domain on each
call to the Compile method. Be wary of the overhead when designing
applications that may invoke the Compile method multiple times during
their lifetime.
Second, the Compile method will automatically load the new assembly into
the current AppDomain if the GenerateInMemory parameter flag is set to
true and the compilation is successful. If you don't want the assembly loaded
immediately, make sure to set GenerateInMemory to false.

We'll be looking at workflow activation later, which is a lightweight alternative to
compilation. For now, we have one more compilation environment to examine.

Compilation with MSBuild
MSBuild is the XML-based build engine included with the .NET 2.0 runtime. All
of the .csproj and .vbproj project files used by Visual Studio are also MSBuild
files. Whenever a developer asks Visual Studio 2005 to build a project, the IDE
uses a hosted instance of MSBuild to perform the build. A developer could also
use MSBuild directly from the command line and pass command-line options. The
Windows Workflow install will register .xoml file extensions to build with MSBuild.

We are going to build our custom activity and workflow into the same assembly
using MSBuild. We can use the same XOML file as the last example, and create an
MSBuild project file.

<Project
 DefaultTargets="Build"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <OutputType>library</OutputType>

 <AssemblyName>purexaml3</AssemblyName>

 </PropertyGroup>
 <ItemGroup>
 <Reference Include="System" />

 <Reference Include="System.Workflow.Activities" />

 <Reference Include="System.Workflow.ComponentModel" />

 <Reference Include="System.Workflow.Runtime" />

 </ItemGroup>
 <ItemGroup>
 <Compile Include="..\CustomActivity\WriteLineActivity.cs"/>

 </ItemGroup>
 <ItemGroup>

•

•

Chapter 2

[41]

 <Content Include="purexaml3.xoml"/>

 </ItemGroup>
 <Import
 Project="$(MSBuildBinPath)\Microsoft.CSharp.targets" />
 <Import

 Project="$(MSBuildExtensionsPath)\Microsoft\Windows Workflow
Foundation\v3.0\Workflow.Targets" />

</Project>

Our MSBuild file consists of properties, items, and targets. Properties �������������� configure the
build by setting the output type and assembly name. Items represent the inputs to
the build engine, like source code files and assembly references. We've included our
XOML file as well as the C# source code file for the WriteLineActivity. Finally,
we import targets for C# and workflow compilation. These targets will execute the
necessary tasks to compile the code and workflow. When we create a new workflow
project in Visual Studio, the project template automatically sets up the project file to
import the workflow targets and reference the workflow assemblies.

To see the XML behind a project file, right-click a project
file in Visual Studio and select Unload Project from the
context menu. Right-click the project again and select the
Edit option. The typical workflow project will contain more
XML than the bare minimum we've defined above, but
you'll notice all projects created by the workflow templates
will have references to the workflow assemblies, and an
import of the workflow target definitions.

At this point, all we need to do is execute MSBuild and pass the name of our new
project file.

Authoring Workflows

[42]

Notice the XOML compilation phase generates C# code into a temporary directory,
similar to how ASP.NET compiles web forms. MSBuild feeds the temporary source
code and the project source code to the C# compiler. This is an important step to
remember, because our code will compile at the same time as the temporary code
created from the workflow markup. We will see later how this approach will let us
extend the workflow type with our code.

Note that in a Visual Basic project, the code generated from the XOML compilation
is Visual Basic code. Visual Basic workflow projects import a different targets file:
Workflow.VisualBasic.Targets.

Code Generation and XAML Serialization
We mentioned earlier that the workflow compiler generates source code from XAML
as part of the compilation process. When using MSBuild, the destination for the
source code is a temporary directory, but we can ask the command-line compiler to

Chapter 2

[43]

generate a permanent file using the parameter /t:codegen. Let's ask the workflow
compiler to generate code from a XOML file instead of creating an assembly. C# is
the default language the compiler will use. Visual Basic is also available as an option
(/language:vb).

The generated source code looks like the source code below (except that some
extraneous namespaces and compiler directives were removed):

using OdeToCode.WinWF.Activities;
using System.Workflow.Activities;

public partial class MyWorkflow : SequentialWorkflowActivity
{
 private WriteLineActivity writeLineActivity1;

 public MyWorkflow()
 {
 this.InitializeComponent();
 }

 private void InitializeComponent()
 {
 this.CanModifyActivities = true;

 this.writeLineActivity1 = new WriteLineActivity();
 this.writeLineActivity1.Message = "Hello, workflow!";
 this.writeLineActivity1.Name = "writeLineActivity1";
 this.Activities.Add(this.writeLineActivity1);
 this.Name = "MyWorkflow";

 this.CanModifyActivities = false;
 }
}

This code will look similar to the code created by the workflow designer in our
first example of this chapter. The InitializeComponent method creates a tree
of activities by creating a WriteLineActivity and adding the activity to the
Activities collection. Notice the class also includes a partial keyword on the class
definition. Remember, the partial keyword allows a class definition to span

Authoring Workflows

[44]

multiple source code files, and allows us to augment the compiler-generated
code with our own code. We will revisit the implications of the partial class
definition soon.

Not only can we generate source code from XAML, we can generate XAML
from a workflow instance. Remember XAML is essentially an XML serialization
format for managed objects. We can walk up to a workflow object with a
WorkflowMarkupSerializer and produce mark-up. The following code will display
the mark-up for a running workflow:

using (WorkflowRuntime runtime = new WorkflowRuntime())
using (StringWriter stream = new StringWriter())
using (XmlWriter writer = XmlWriter.Create(stream))
{
 Type t = typeof(MyWorkflow);

 WorkflowInstance instance = runtime.CreateWorkflow(t);

 WorkflowMarkupSerializer serializer;

 serializer = new WorkflowMarkupSerializer();

 serializer.Serialize(

 writer,

 instance.GetWorkflowDefinition()

);

 Console.WriteLine(stream.ToString());
}

If we run this code on a workflow instance with our custom activity, we will produce
the following XAML.

<?xml version="1.0" encoding="utf-8"?>
<ns0:MyWorkflow
	 x:Name="MyWorkflow"
	 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
	 xmlns:ns0="clr-namespace:ReSerialize;Assembly=chapter2_Host"
/>

Notice the workflow definition is now opaque. When the workflow compiler creates
a new type from a workflow definition, the definition becomes fixed and we cannot
see the activities inside with serialization. We can still create an instance of the above
workflow using XAML activation, which we will cover in the next section. XAML
activation walks the XML and creates objects from the mark-up instructions. When
activation instantiates MyWorkflow, the InitializeComponent method will create all
the activities for the workflow, so the serialization does not need to explicitly list the
child activities with XAML. The instance will work just like our other examples

Chapter 2

[45]

and execute a WriteLineActivity, thanks to the code the compiler generated for the
MyWorkflow class.

XAML Activation
In some scenarios, compilation can become a burden. Imagine a database containing
a thousand or more workflow definitions tailored and updated for specific users. In
this scenario, we might want to avoid the churn of creating new assemblies. What
we want to do is load and execute a workflow with the least amount of overhead.
Fortunately, this is an area where a pure XAML approach excels, thanks to a feature
known as XAML activation.

If we want to activate the workflow we created earlier, we have to tweak the XOML
file. Remember we used an x:Class attribute to tell the compiler the name of the
Type to create from the workflow definition. Since we will not be putting the XAML
through a compilation phase, there is no compiler available to create a new class.
Notice the XAML we created through the WorkflowMarkupSerializer earlier does
not include an x:Class attribute.

<SequentialWorkflowActivity
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow"

 xmlns:otc="http://schemas.OdeToCode.com/WinWF/Activities"

 >

 <otc:WriteLineActivity Message="Hello, workflow!"/>

</SequentialWorkflowActivity>

Activation is only available for workflows defined entirely
in workflow mark-up. Since there is no compiler involved,
we will need to give up features provided by the XAML
namespace (including the ability to define in-line code).
Activation merely creates an object hierarchy directly from
the XAML representation. XAML is effectively an XML
serialization format for CLR objects.

Activation takes place with the same CreateWorkflow method of the
WorkflowRuntime class that we've used earlier. However, we need to use a different
overload of the method. Instead of passing a Type object, we need to pass an
XmlReader to steam our workflow mark-up into the runtime.

using (WorkflowRuntime runtime = new WorkflowRuntime())
using (AutoResetEvent waitHandle = new AutoResetEvent(false))

Authoring Workflows

[46]

{
 runtime.WorkflowCompleted += delegate { waitHandle.Set(); };
 runtime.WorkflowTerminated += delegate { waitHandle.Set(); };

 TypeProvider typeProvider = new TypeProvider(runtime);

 typeProvider.AddAssembly(Assembly.GetExecutingAssembly());

 runtime.AddService(typeProvider);

 XmlReader reader = XmlReader.Create(@"..\..\purexaml\purexaml5.
xoml");

 WorkflowInstance instance = runtime.CreateWorkflow(reader);

 instance.Start();

 waitHandle.WaitOne();
}

When we were compiling XOML files, we could specify an assembly reference to the
assembly containing our custom WriteLineActivity. When activating a workflow,
the runtime will still need to locate custom activity assemblies, but this time we need
to use a TypeProvider service. A TypeProvider holds references to assemblies
needed for workflow activation. The runtime will rely on the TypeProvider service
to resolve types and assemblies. In our code we are adding the executing assembly as
an assembly reference.

One impact to consider before using activated workflows revolves around
versioning. When we compile a workflow, we can provide an assembly version
and other metadata to identify the assembly. We can even provide a strong name
to uniquely identify the assembly and prevent tampering. XOML files, on the
other hand, have no versioning infrastructure built in, so if we need versioning or
cryptographic signing we'll have to write some custom code.

XAML-only Summary
We've covered the options available to build pure XAML solutions. Taking a pure
XAML approach to building workflows can be useful if we want to use the workflow
activation features for a lightweight approach to building new workflows. XAML is
also a good approach when we build custom tools to define workflows, as these tools
can rely on XML libraries and APIs to construct markup. A pure XAML approach
doesn't work so well when we want to augment a workflow with our own C# or
Visual Basic code. In the next section, we will take a look at combining XAML
with code.

Chapter 2

[47]

Code and XAML Together
Visual Studio offers a second option for building workflows. The second option uses
XAML mark-up and code separation, also commonly referred to as code-beside. In
this scenario, the designer stores mark-up inside a XOML file, and we augment the
definition with source code in a C# or Visual Basic file. The item template for this
option is Sequential Workflow (with code separation).

This item template also adds two files to the project. If we call our workflow
CodeSeparation, the files will be CodeSeparation.xoml, and CodeSeparation.
xoml.cs. If we build the same workflow as we did at the beginning of the chapter
(with a CodeActivity inside), our CodeSeparation.xoml.cs file will look like
the following:

using System;
using System.Workflow.Activities;

namespace chapter2_library
{
 public partial class CodeSeparation :
 SequentialWorkflowActivity
 {
 private void codeActivity1_ExecuteCode(object sender,
												
	 EventArgs e)
 {

 }
 }
}

Our XOML file, meanwhile, contains the following XAML:

<SequentialWorkflowActivity
 x:Class="chapter2_library.CodeSeparation"
 x:Name="CodeSeparation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow">

Authoring Workflows

[48]

 <CodeActivity
 x:Name="codeActivity1"
 ExecuteCode="codeActivity1_ExecuteCode"
 />

</SequentialWorkflowActivity>

The default editor for a XOML file is the graphical
workflow designer. If we want to look at the XAML in a
XOML file, we can right-click the file and select the Open
With option.����� The Open With dialog will give us a choice
of editors, including the XML editor, which let's us see and
modify the XAML inside.

Remember the project file for our workflow project will include MSBuild targets,
and these targets know how to compile XAML workflow definitions in XOML files.
The workflow compiler will first generate C# source code into a file in a temporary
directory. The file will contain a class named CodeSeparation and marked with
the partial keyword modifier, which allows our partial CodeSeperation class to
augment the workflow. We've reviewed this process earlier in the chapter. The C#
compiler picks up the final class definition by using both files.

What we do not get to see in this process is the temporary C# code, but this code
will look like the code we generated earlier with the workflow compiler and the
/t:codegen parameter. Although we have not used our custom WriteLineActivity
in any of the workflows designed with Visual Studio, the Toolbox window will
contain the activity and allow us to drop the activity into the workflow. Visual
Studio will automatically add any custom activities it finds in the current solution to
the Toolbox window.

Chapter 2

[49]

Summary
We've looked at several options available for authoring and building
workflows. We've built workflows using XOML files and compiled the files both
programmatically and from the command line. We also built workflow using pure
code, and with code separation. When it comes time to execute a workflow, the result
from each option is nearly the same. All the options ultimately produce a collection
of objects in memory, and the objects maintain parent-child relationships. The
workflow runtime manages the execution of the objects.

Code-based workflow definitions are perfectly reasonable to use for general-purpose,
fixed workflows. When using the workflow designer, chances are we'll never have to
look at the designer-generated code, and we don't particularly care if the designer is
using XAML, C#, or Visual Basic code to maintain the workflow definition.

XAML-based workflow definitions open up a number of additional possibilities. If
we have a workflow definition entirely in XAML we can use workflow activation
and avoid compilation. Activation is useful when building a large number of
dynamic workflows. We merely need to pass the XML into the workflow runtime to
have a run-able instance of a workflow.

Using XAML with code-beside files will keep our workflow definition in an XML
file. If we need to write custom tools for our workflows, like a custom workflow
designer, then XAML is the preferred approach. XAML is both tool-able, and we can
use the wide variety of existing XML APIs to build our tool. XAML, like the CLR, is
also language agnostic. The XAML-based workflow can work equally well alongside
any .NET language. Also, if we want to forego the graphical designer and tweak
workflow definitions by hand, the XML format is easier to read and comprehend
compared to a code-based definition.

Sequential Workflows
Windows Workflow offers two workflow execution styles out of the box: sequential
and event-driven. A sequential workflow completes one activity and moves to
the next, executing a sequence of consecutive steps. As an example, a sequential
workflow could model the process of moving records from a website's compressed
log file into a database table. Step 1 would download the compressed log file. Step
2 would decompress the log file. Step 3 would bulk insert records from the log file
into a table, and step 4 would create summary statistics from the new records. Even
though a sequential workflow can use branches, loops, and receive external events, it
is mostly predictable and marches inevitably forward to completion.

Event-driven workflows, on the other hand, rely on external events to drive them to
a finishing point. Event-driven workflows model a workflow as a state machine. A
state machine consists of a set of states (including an initial state and a final state),
and a set of events. The state machine is always in one of the defined states, and
cannot transition to a new state until an event arrives.

With these differences in mind, let's explore sequential workflows, and return to
state machines in Chapter 7.

The SequenceActivity
Activities are the basic building blocks in Windows Workflow, and a sequential
workflow itself is an activity—a SequentialWorkflowActivity to be precise. The
SequentialWorkflowActivity class derives from the SequenceActivity class,
which in turn derives from the CompositeActivity class. These superclasses dictate
the behavior and characteristics of a sequential workflow. The class diagram as
shown on the next page depicts this class hierarchy.

Sequential Workflows

[52]

The CompositeActivty class provides the logic for an activity to contain one or
more child activities. A sequential workflow will typically contain multiple children
(and the children may also be CompositeActivity objects with their own children).

The SequenceActivity class provides the logic to execute child activities. The
SequenceActivity iterates through its children in a forward-only direction,
executing each child once and then moving to the next child. When the last child
activity is complete, the sequence is finished. As we mentioned earlier, this doesn't
mean a sequential activity cannot loop or branch, but it does mean execution always
moves forward. There is no mechanism available to jump back to an arbitrary
activity in the workflow.

Simple Flow
As an example, let's start building a simple sequential workflow. Our workflow
will increment a counter and write the counter value to the screen. To start writing
our workflow we will use the Sequential Workflow Console Application C#
template from the Visual Studio New Project menu. The project wizard will give
us an application and a workflow definition named Workflow1. Right-click on the
workflow and select View Code to open the code-beside file. Inside, we'll place the
highlighted code below:

public partial class Workflow1 : SequentialWorkflowActivity
{
 int counter = 0;

}

Chapter 3

[53]

Back in the workflow design window, we'll drag a CodeActivity from the Toolbox
window to the design surface. Sequential workflows and sequence activities in
general always start execution at the top of the flow and end at the bottom. Drop
points (small green plus signs) will appear along the line of execution whenever we
are dragging an activity nearby. In the Properties window, we can give this activity
a name of IncrementCounter. We'll drag a second CodeActivity from the Toolbox
and drop the activity beneath our first activity. We'll give this activity the name of
WriteCounter. Our workflow will look as below:

Next, we can give our IncrementCounter an ExecuteCode handler by
double-clicking the activity in the workflow designer. The designer will generate a
skeletal method for the handler, and all we have to do is supply the internal details.
We'll add one line of code to increment the counter field.

private void IncrementCounter_ExecuteCode(object sender, EventArgs e)
{
 counter++;
}

We can return to the designer view, double-click WriteCounter, and add the
following code:

private void WriteCounter_ExecuteCode(object sender, EventArgs e)
{
 Console.WriteLine("The value of counter is {0}.", counter);
}

Sequential Workflows

[54]

If we run this workflow, we'll only see one line of output, telling us, The value of
counter is 1. The sequential workflow executes the two child activities in the order
they appear, and after both have executed, the sequential workflow is complete.
Next, we'll add some control flow activities to make the workflow more interesting.

Sequences Inside Sequences
The WhileActivity allows us to execute a single child activity until a condition
returns false. We can drag a WhileActivity from the Toolbox into our sequential
workflow as the first activity in the workflow.

An empty WhileActivity will display Drop An Activity Here on the designer
screen. It might sound surprising that we can place only a single child activity inside
the WhileActivity. The WhileActivity derives from the CompositeActivity class,
meaning it will hold child activities, but it isn't derived from SequenceActivity,
which provides the logic to execute multiple child activities. Instead, the
WhileActivity executes only a single child activity.

If we want both of our code activities to execute inside the WhileActivity,
we need to enclose the activities inside a SequenceActivity. We can drag
a SequenceActivity from the Toolbox and drop the activity inside the
WhileActivity. Then we can move both of our code activities inside the sequence.
Our workflow would now look as shown in the screenshot on the next page.

Chapter 3

[55]

Before we can run the workflow, we'll need to provide a condition for the
WhileActivity to evaluate. We can write conditions into an external rules file, or
directly in code. Let's add the following method to the code behind the workflow:

private void CheckCounter(object sender, ConditionalEventArgs e)
{
 e.Result = false;
 if (counter < 10)
 {
 e.Result = true;
 }
}

The CheckCounter method is a special method known as a code condition. In WF,
a code condition returns a true or false value through the Result property of a
ConditionalEventArgs argument. In the Properties window for the WhileActivity,

Sequential Workflows

[56]

we can set Condition to Code Condition, and select CheckCounter in the drop‑down
list of available conditions. Now our workflow will print ten lines to the console, each
with a higher value for the counter field.

Of course, not all workflows can run in isolation using only a counter field and the
console. We often need to pass data to a workflow and fetch data from a workflow.

Workflows and the Outside World
For many workflows, an important step will be to decide how the workflow will
interact with an application. How do we know if a workflow finished successfully
or threw an exception? How do we get data into a workflow instance? When the
workflow completes, how do we get data out? Technically, there are an infinite
number of solutions to these questions. In this section, however, we are going to
cover some of the fundamental techniques.

The basic mechanisms for communicating with a workflow include events, methods,
and workflow parameters. An application can both raise events to a workflow
instance and receive lifecycle events about a workflow instance from the workflow
runtime. These lifecycle events are the first topic for discussion.

Workflow Instance Lifetime Events
The WorkflowRuntime class is the gateway to all running workflows.
WorkflowRuntime exposes a number of events we can use to detect changes in a
running workflow. These events are listed in the following table:

Name Description
WorkflowAborted Occurs when an instance aborts. The WorkflowInstance

class includes an Abort method to abort a workflow.
WorkflowCompleted Occurs when the instance completes, and includes a

WorkflowCompletedEventArgs �������������������������� parameter to retrieve any
output parameters.

WorkflowCreated Occurs after we create a workflow with the WorkflowRuntime's
CreateWorkflow method.

WorkflowIdled Occurs when a workflow enters an idle state. A workflow
becomes idle when it is waiting for a timer or external event to
take place, for instance.

WorkflowLoaded Occurs when a persistence service has restored a workflow
instance into memory to continue execution.

WorkflowPersisted Occurs when a persistence service persists a workflow. A
workflow may persist and then unloaded from memory when
it is in the idle state and waiting for an event.

Chapter 3

[57]

Name Description
WorkflowSuspended Occurs when the runtime suspends a workflow, typically due

to a SuspendActivity in the workflow.
WorkflowResumed Occurs when workflow execution continues after a suspension.
WorkflowStarted Occurs when a workflow firsts starts execution.
WorkflowTerminated Occurs when a workflow terminates, typically due to an

unhandled exception. WorkflowTerminatedEventArgs will
include the exception object.

WorkflowUnloaded Occurs when the runtime unloads a workflow from memory,
typically due to the workflow being idle.�

To see these events in action we can look at the project named chapter3_sequential
in the code accompanying the book. The WorkflowEvents.xoml file in the project
includes a Code activity and a Suspend activity. The design mode of the workflow
should look as shown in the screenshot below:

The Code activity in this workflow only writes a message to the console. The code
behind WorkflowEvents is shown below:

using System;
using System.Workflow.Activities;

namespace chapter3_sequential

Sequential Workflows

[58]

{
 public partial class WorkflowEvents : SequentialWorkflowActivity
 {
 private void codeActivity1_ExecuteCode(object sender,
 EventArgs e)
 {
 Console.WriteLine("Executing...");

 }
 }
}

In Program.cs, the application wires up all of the WorkflowRuntime events using
code like the following:

runtime.WorkflowCreated +=
 new EventHandler<WorkflowEventArgs>(runtime_WorkflowCreated);
runtime.WorkflowIdled +=
 new EventHandler<WorkflowEventArgs>(runtime_WorkflowIdled);

Each event handler writes a message to console, which enables us to see which
events fire and when.

static void runtime_WorkflowIdled(object sender, WorkflowEventArgs e)
{
 Console.WriteLine("Workflow idled");
}

static void runtime_WorkflowCreated(object sender,
 WorkflowEventArgs e)
{
 Console.WriteLine("Workflow created");
}

Two of the events (Terminated and Completed) need to call the Set method of
the program's WaitHandle object. As discussed in Chapter 1, the default runtime
behavior is to execute our workflow on a background thread. The program will
need to block the main thread on the WaitHandle object using the WaitOne method.�
The WaitOne method��� keeps the main thread waiting until the Set method signals
completion of the workflow. If we didn't wait for the completion signal, the main
thread would exit and the application would terminate before the workflow has a
chance to execute.

Here is an event handler for the Terminated activity, which calls Set and writes
information about the unhandled exception to the console.

static void runtime_WorkflowTerminated(object sender,
 WorkflowTerminatedEventArgs e)

Chapter 3

[59]

{
 Console.WriteLine("Workflow terminated");
 Console.WriteLine("\tException: " + e.Exception.Message);
 waitHandle.Set();
}

Executing our console mode program produces the output shown in the
screenshot below:

The output indicates that the ����������������� workflow fired a created event, a started event, and
then executed the code inside of the first CodeActivity. The next activity was the
SuspendActivty highlighted in the screenshot below. The activity has an Error
property available in the Toolbox window, and we've set this property to the string
literal intentionally suspended.

The suspendActivity tells the runtime to temporarily halt execution of the
workflow instance. We might want to suspend a workflow if execution reaches a
point where processing cannot continue without intervention, but we don't want

Sequential Workflows

[60]

to terminate the workflow with an exception. In this scenario, we are suspending
the workflow just to see the WorkflowSuspended event fire. The contents of
the Error property will be available to the event handler in an instance of the
WorkflowSuspendedEventArgs class.

static void runtime_WorkflowSuspended(object sender,
 WorkflowSuspendedEventArgs e)
{
 Console.WriteLine("Workflow suspended");
 Console.WriteLine("\tReason: " + e.Error);
 e.WorkflowInstance.Resume();
}

When the WorkflowSuspended event fires, we write out a message and immediately
ask the workflow instance to resume processing. The workflow picks up where it left
off, and runs to completion.

Workflow instance events are not the only technique
available for monitoring the execution of a workflow.
A workflow tracking service can receive exceptionally
granular information about the state of a workflow. WF
provides a SqlTrackingService class to log tracking
information to a SQL Server database, but we can also
implement and plug a custom tracking service into the
runtime. We cover tracking services in Chapter 6.

Of course, there will be times when we need to get information into a workflow before
execution begins. Parameters are one technique for feeding data to a workflow.

Workflow Parameters
An overloaded version of the runtime's CreateWorkflow method allows us to pass
parameters into a new workflow instance. Parameters are a collection of name and
value pairs in an instance of the Dictionary generic class.

Dictionary<string, object> parameters = new Dictionary<string,
object>();
parameters.Add("FirstName", "Scott");
parameters.Add("LastName", "Allen");

instance = runtime.CreateWorkflow(typeof(WorkflowParameters),
parameters);
instance.Start();

Chapter 3

[61]

When the workflow runtime creates a new workflow instance, it tries to find a
companion property for each named parameter value. A companion property
is a public, writable property on the workflow object with the same name as
the parameter. For example, the following workflow class will accept incoming
parameters with the names FirstName and LastName.

public partial class WorkflowParameters : SequentialWorkflowActivity
{
 public string FirstName
 {
 set { _firstName = value; }
 }
 private string _firstName;

 public string LastName
 {
 set { _lastName = value; }
 }
 private string _lastName;

 public string FullName
 {
 get { return _fullName; }
 }
 private string _fullName;

 private void codeActivity1_ExecuteCode(object sender,
 EventArgs e)
 {
 _fullName = String.Format("{0} {1}", _firstName, _lastName);
 }

 // ...

If we try to pass a FullName parameter, the runtime will throw an exception.
The FullName property is a read-only property. If the runtime cannot find a public,
writable companion property for an incoming parameter, it throws a System.
ArgumentException exception. The reverse is not true, however. Parameters
are optional, and we don't need to specify an input parameter for every public
writable property.

The activities inside of a workflow don't need to perform any special tricks to
fetch the parameter values. The runtime will have placed all the parameters into
properties before execution begins. In the above code, we have an������������� ������������ExecuteCode�
event handler for a� CodeActivity ��� concatenating the backing fields for the first and
last name parameters into a full name field. As you might have guessed, we will be
able to retrieve the� FullName �������������������������������� property as an output parameter.

Sequential Workflows

[62]

When a workflow completes, the runtime raises a WorkflowCompleted
event and passes along a WorkflowCompletedEventArgs object.
WorkflowCompletedEventArgs contains an OutputParameters property, which is
a Dictionary collection of all output parameters. The runtime will copy the value of
each public, readable workflow property into the OutputParameters collection.

static void runtime_WorkflowCompleted(object sender,
 WorkflowCompletedEventArgs e)
{
 Console.WriteLine("Workflow completed");
 Console.WriteLine("\tOutput parameters: ");

 foreach (KeyValuePair<string, object> pair in e.OutputParameters)

 {

 Console.WriteLine("\t\tName: {0} Value: {1}", pair.Key,

 pair.Value);

 }

 waitHandle.Set();
}

The output of the above code will look as shown below:

Raising Events and Invoking Methods
Many developers will want to establish a more formal mechanism for interacting
with a workflow. Although the Dictionary approach is an easy and flexible
approach to putting data into a workflow, it's easy to forget a parameter, or
forget the name of a parameter. Also, we can only put data into a workflow using
parameters at the start of a workflow, and only get data out at the end. Many
workflows will need to exchange data with the host at various times during
execution. To achieve this goal we can use events and method calls. This section is
going to discuss the fundamentals of communication for data transfer, and we will
return with more depth in Chapter 8.

Chapter 3

[63]

Service Contracts
A workflow and its host can exchange data via a local communication service (LCS).
An LCS allows events and method calls between a workflow and a host. Behind the
scenes, the workflow runtime works with an LCS to intercept communications and
provide additional services (like queuing an event until a workflow is in a state to
accept the event).

Communication via an LCS requires a messaging contract, and in .NET, a contract is
synonymous with an interface. Interfaces will define the events and methods that an
LCS will expose. Events pass data from the host to a workflow, while methods pass
data from a workflow to the host. As an example, the following interface defines a
bug tracking service with one event and one method:

[ExternalDataExchange]
interface IBugFlowService
{
 void AssignBug(Bug bug);
 event EventHandler<BugAddedArgs> BugAdded;
}

The workflow can invoke the AssignBug method to pass a Bug object to its host.
Likewise, the host can raise the BugAdded event and pass data into a workflow via an
event argument. The ExternalDataExchange attribute will identify this interface as
a messaging contract. Windows Workflow will look for this piece of metadata when
we add local services to the runtime. The Bug class we are passing is a simple data
container with three properties, and looks like the following:

[Serializable]
public class Bug
{
 public Bug(int id, string title, string description)
 {
 _id = id;
 _title = title;
 _description = description;
 }

 public Bug()
 {

 }

 private int _id;
 public int ID
 {
 get { return _id; }

Sequential Workflows

[64]

 set { _id = value; }
 }

 private string _title;
 public string Title
 {
 get { return _title; }
 set { _title = value; }
 }

 private string _description;
 public string Description
 {
 get { return _description; }
 set { _description = value; }
 }	
}

All objects passing between a workflow and a host must be serializable objects. For
the Bug class, we decorate the class with a Serializable attribute. In order to pass a
Bug via an event, we will need a serializable event argument class, shown below:

[Serializable]
public class BugAddedArgs : ExternalDataEventArgs
{
 public BugAddedArgs(Guid instanceId, Bug newBug)
 : base(instanceId)
 {
 _bug = newBug;
 }

 private Bug _bug;
 public Bug NewBug
 {
 get { return _bug; }
 set { _bug = value; }
 }	
}

In addition to being serializable, LCS events must derive from the
ExternalDataEventArgs class (shown in the screenshot on the next page). The
workflow runtime and the LCS will use additional properties provided by this class
during event processing. One such property is the InstanceId, which we need to
pass into the base class constructor. The InstanceId is a Globally Unique Identifier
(GUID), and every workflow instance the runtime creates receives a unique instance
identifier. The InstanceId will allow the runtime to route the events to the proper
workflow instance.

Chapter 3

[65]

So far, we have defined three entities:

1.	 An� IBugFlowService interface, which defines the communications allowed
between host and workflows.

2.	 A Bug class, which holds the data we will pass back and forth.
3.	 A BugAddedArgs class, which derives from ExternalDataEventArgs and

carries data to the workflow during the BugAdded event.

Now, we need to provide a concrete implementation of the service described by
the contract.

Service Implementation
There is nothing particularly special about our local service implementation.
The service merely needs to provide an appropriate implementation for the
IBugFlowService interface. The service will be an intermediary between the host
and bug tracking workflows.

public class BugFlowService : IBugFlowService
{
 public void AssignBug(Bug bug)
 {
 // notify someone that it is time to assign a bug...
 Console.WriteLine("Assign '{0}' to a developer", bug.Title);
 }

 public void CreateBug(Guid instanceID, Bug bug)
 {
 // tell the workflow about the new bug
 BugAddedArgs args = new BugAddedArgs(instanceID, bug);
 args.WaitForIdle = true;
 EventHandler<BugAddedArgs> ev = BugAdded;
 if (ev != null)

Sequential Workflows

[66]

 ev(null, args);
 }

 public event EventHandler<BugAddedArgs> BugAdded;
}

In this example, our AssignBug method only prints a message to the console. In a
real application, we might ultimately display a dialog box for a user to assign the
bug (and then possibly raise another event to let the workflow know we've assigned
a bug to a team member). The CreateBug method builds a BugAddedArgs object and
raises the BugAdded event. The WaitForIdle property ensures the workflow will be
in a state to receive the event. Now that we've implemented our messaging service,
we can build a workflow to interact with the service.

Workflow Implementation
In this scenario, the two key activities from the base activity library are the
HandleExternalEventActivity and the CallExternalMethodActivity. In
the screenshot below, we've placed one of each activity into the workflow to
communicate with the host application.

The first activity in the workflow is the HandleExternalEventActivity. In the
Properties window, we configure the activity to listen for the BugAdded event by
first setting Interface Type to our IBugFlowService contract (the full Type name,
including namespace, is chapter3.IBugFlowService). We can then select BugAdded

Chapter 3

[67]

for the EventName property. The Parameters section of the Properties windows
allows us to bind the incoming BugAddedArgs parameter to a field in our workflow
class. The event handling method uses the typical sender and e parameters to
represent incoming event arguments.

Clicking the ellipsis in the screen opposite will display a dialog box where we can
bind the parameter to an existing public field or property, or create a new field or
property. The dialog box is shown below:

The next activity is the CallExternalMethod activity. Once again, we will use the
Properties window to set the Interface Type property to our IBigFlowService
interface, and tell the designer what method we want to invoke by selecting
AssignBug for the MethodName. The AssignBug method needs a parameter, so we
will click the ellipsis in the text box for the bug parameter, and create a new field
with the name of _bugToAssign.

We are also going to generate an event handler for the activity's MethodInvoking
event. We can do this by placing the cursor inside the text box on the
MethodInvoking line and clicking the Generate Handlers link in the bottom of
the Properties window. The designer will create an event handler in the class
behind our workflow. The activity will fire this event just before calling the external
method, and inside the event handler we can prepare the data we want to exchange.
The screenshot on the next page displays the complete configuration for the
CallExternalMethodActivity, which we have named AssignBug.

Sequential Workflows

[68]

Finally, the following source code is all of the code-behind for our workflow,
including the MethodInvoking event handler. Inside the handler, we copy the Bug
reference from inside the _newBug field to the _bugToAssign field.

namespace chapter3_sequential
{
 public partial class BugFlow : SequentialWorkflowActivity
 {
 public chapter3.BugAddedArgs _newBug;
 public chapter3.Bug _bugToAssign;

 private void CallAssignBug_MethodInvoking(object sender,
 EventArgs e)
 {
 _bugToAssign = _newBug.NewBug;
 }
 }
}

Remember the _newBug field is the field where the HandleExternalEventActivity
placed the incoming data. We could have also bound the
CallExternalMethodActivity parameter directly to the NewBug property of _newBug
instead of creating a second field and using a MethodInvoking event handler.

Chapter 3

[69]

Host Implementation
Finally, we need to write a host to execute our workflow.

WorkflowRuntime runtime = new WorkflowRuntime();

runtime.WorkflowCompleted +=
 new EventHandler<WorkflowCompletedEventArgs>(
 runtime_WorkflowCompleted);

runtime.WorkflowTerminated +=
 new EventHandler<WorkflowTerminatedEventArgs>(
 runtime_WorkflowTerminated);

ExternalDataExchangeService dataService;
dataService = new ExternalDataExchangeService();
runtime.AddService(dataService);

BugFlowService bugFlow = new BugFlowService();
dataService.AddService(bugFlow);

WorkflowInstance instance;
instance = runtime.CreateWorkflow(typeof(BugFlow));
instance.Start();

Bug bug = new Bug(1, "Bug Title", "Bug Description");
bugFlow.CreateBug(instance.InstanceId, bug);

waitHandle.WaitOne();

Here are the steps we are taking in the host program:

1.	 The host creates an ExternalDataExchangeService and adds the service
to the workflow runtime. This service, provided by Windows Workflow,
facilitates and manages all local communication services inside the workflow
runtime, and will serve as the container for our own BugFlowService.

2.	 The host creates an instance of the BugFlowService and adds the service to
the list of services managed by the data exchange service. The data exchange
service will find the IBugFlowService interface, and prepare to handle
BugAdded events and AssignBug method calls.

3.	 The host creates an instance of the BugFlow workflow, and starts the instance
running. The workflow instance will wait for a BugAdded event.

4.	 The host creates a new Bug object, and passes the bug to the bugFlow's
CreateBug method.

Sequential Workflows

[70]

At this point, we will turn to the visual depiction of the proceedings. The CreateBug
method in our service will raise the BugAdded event. The workflow runtime (with
help from the data exchange service) will catch the event, perform some processing,
and pass the event to the workflow instance. The workflow instance might have
been waiting for minutes, hours, days, or even months for this event to arrive, so
we can't fire an event directly to the workflow instance. The workflow might not
even be in memory at the time we raise the event; the runtime might have persisted
the workflow into the database for long-term storage. By intercepting the event, the
workflow runtime has the chance to load the workflow into memory before passing
the event along. When the workflow calls the AssignBug method, it takes a direct
route to our local service, although workflow does have the opportunity to perform
some pre- and post-processing on the method call.

Faults
Of course, a workflow might not execute flawlessly. Unexpected exceptions may
arise because a database server might not be available, for instance. We can also
intentionally raise an exception with a ThrowActivity.

Managing exceptions inside a workflow is similar to managing exceptions in Visual
Basic or C#. Composite activities can include fault handlers to catch exceptions. If an
activity does not handle an exception that occurs, the runtime will let the exception
propagate to the parent activity. This is similar to an exception moving up the call
stack until the .NET runtime can locate an appropriate exception handler. If the
runtime does not find a catch handler for a .NET application thread, the application
terminates. If an exception occurs inside a workflow, and the runtime can find no
fault handler to catch the exception, the runtime terminates the workflow and raises
the WorkflowTerminated event.

Chapter 3

[71]

The FaultHandlerActivity handles exceptions in Windows Workflow. We can
view the fault handlers for a composite activity by right-clicking the activity and
selecting View Faults. The designer for a sequential workflow activity includes a
shortcut at the bottom of the designer screen. The third small page icon from the left
is the view fault shortcut, which will display the screen as shown below:

Inside the fault view is a storyboard where we can drop one or more
FaultHandlerActivity shapes. We will associate each FaultHandlerActivity
with a .NET exception type, such as System.NullReferenceException or System.
ArgumentException. Just like catch clauses in Visual Basic and C#, a fault handler
will handle any exceptions of the given type, or any exceptions derived from the
given type. In the following screenshot, overleaf, we've added a fault handler with
a FaultType of System.Exception. Since every exception ultimately derives from
System.Exception, this fault handler will handle any possible exception in
the workflow.

Sequential Workflows

[72]

Each fault handler can have a list of child activities to execute when it catches an
exception. Just like exception handlers in a general-purpose programming language,
the purpose of a fault handler is to clean up or reverse any partially completed
work. The workflow runtime will raise the WorkflowCompleted event if the
SequentialWorkflowActivity fault handler handles an exception, as opposed to
raising the WorkflowTerminated event if the exception goes unhandled. If we want
to make sure the workflow terminates, we can use a ThrowActivity inside the
fault handler.

In the screenshot on the next page, we've set up a fault handler with the following
configuration:

The fault handler specifies a FaultType of System.Exception. The activity
binds the incoming exception to a member field with the name of fault.
The first child activity, a CodeActivity, will write a message to the console
about the exception.
The second child activity, a ThrowActivity, will re-throw the handled
exception by specifying the Fault as mapping to the fault field.

•

•

•

Chapter 3

[73]

Summary
In this chapter we've explored some of the details of the
SequentialWorkflowActivity, including how to communicate and pass data
between a sequential workflow and its host, and how to handle faults inside a
sequence of activities.

Sequential workflows inherit most of their behavior from the SequenceActivity
class, which can appear in more than just a sequential workflow. As we will see
later in the book, sequential activities are also important in the other primary type of
workflow, the event-driven workflow.

The Base Activity Library
Activities are the basic building blocks for workflows. The base activity library in
Windows Workflow contains general-purpose activities to use for all workflows.
There are activities for control flow, transaction management, local communication,
web services, and more. These activities appear on the Toolbox window of the
workflow designer. Some of these activities, like the CodeActivity, are simple.
The job of the CodeActivity is to execute a block of code. Other activities, like the
PolicyActivity, are more complex. The PolicyActivity can evaluate prioritized
rules with forward chaining. We can build powerful workflows using just the
activities inside the base activity library.

We are about to embark on a tour of the base activity library. Many of the activities
here deserve a more thorough coverage, but our goal for this tour is to understand
the basic capabilities of each activity type, and come away with an idea of when we
can use each one. We will start the tour with the most basic activities.

The Basics
These activities model primitive operations that exist in almost every
programming environment, such as conditional branching, looping, and grouping
of sub-activities. We will start with an activity that appears many times in these code
samples, the CodeActivity.

The CodeActivity
The Code activity's only interesting feature is its ExecuteCode event. We will need
to pair the event with an event handler before the activity will pass validation. In the
workflow designer, we can double-click on a Code activity, and Visual Studio will
create and assign the event handler for us — all we need to do is write the code. The
following code is an event handler for ExecuteCode that displays a message on
the screen.

The Base Activity Library

[76]

private void codeActivity1_ExecuteCode(object sender, EventArgs e)
{
 Console.WriteLine("Hello, world!");
}

The screenshot below shows a Code activity as it appears in the designer. A red
exclamation point hovers above the top right of the activity because we have not
assigned an ExecuteCode event handler, and the activity is failing validation. Any
time an exclamation point appears, we can click with the mouse to find the reason
for the validation error.

It might seem useful to execute arbitrary code in a workflow, but in reality the Code
activity should appear relatively infrequently and as a special case. Instead of using
Code activities, we should look to package code into custom activities (a topic for
Chapter 5). Custom activities can expose properties and allow us to turn arbitrary
code into a reusable activity.

Also, many of the activities we will examine raise events when they execute. We can
use the handlers for these events to write small pieces of customized code to perform
small tasks instead of dropping a new Code activity into the workflow. We will see
an example of these event handlers soon.

The IfElseActivity
The IfElse activity is similar to the If…Then…Else statement in Visual Basic,
and the if-else in C#. Inside an IfElse activity are one or more IfElseBranch
activities. Each branch activity has a Condition property. We are required to set the
Condition property on all branches, except for the last branch.

Chapter 4

[77]

The IfElse activity evaluates branches from left to right. The first branch whose
condition property evaluates to true will execute. If no branches have a condition
that evaluates to true, then no branches will execute. If the last branch has no
condition assigned, it will execute (but only if no other branches executed).

We can add additional branches by right-clicking the IfElseActivity and selecting
Add Branch. We can remove branches by right-clicking a branch and selecting
Delete. The screenshot below shows an IfElse activity in action.

The Condition property of each branch can be configured as a declarative rule
(which the designer persists to an external .rules file in XML format), or as a code
condition (an event handler). If we configure the condition as a declarative rule, then
we can launch the Rule Condition Editor from the Properties window and type an
expression. For instance, if the workflow has an integer property named Sales, we
could enter an expression like the following:

this.Sales > 10000

The same condition written as a Code condition would look like the following code:

private void checkSalesAmount(object sender, ConditionalEventArgs e)
{
 e.Result = Sales > 10000;
}

The activity raises an event to evaluate a Code condition. We can return the outcome
of the condition as a true or false value in the event argument's Result property. In
the Properties window, we can set the name of the Code condition to the name of
this method (checkSalesAmount). Chapter 9 will cover conditions in more detail.

The Base Activity Library

[78]

The WhileActivity
Like the IfElse activity, the While activity has a Condition property that can be
either a declarative rule or a code condition. The WhileActivity will continue to run
as long as the condition returns true. This activity will evaluate its condition before
each iteration.

Unlike the IfElseBranchActivity, the WhileActivity can hold only a single child
activity inside. This restriction doesn't prevent us from using multiple activities
inside a loop, as we will see in the next section.

The SequenceActivity
A Sequence activity is a composite activity, and will manage one or more child
activities. The activities inside a sequence execute one at a time, until the last activity
completes. The WhileActivity only permits a single child activity, but if we make
the single activity a SequenceActivity, we can drop additional activities inside
the sequence activity. All of the children will then run sequentially each time the
WhileActivity completes an iteration.

The SuspendActivity
The Suspend activity will temporarily halt a workflow. A Suspend activity might be
useful when a workflow encounters an error that requires manual intervention. The
activity has an Error property, which is a string.

Chapter 4

[79]

A host can subscribe to the workflow runtime's WorkflowSuspended event
and retrieve the error message using the Error property of the event's
WorkflowSuspendedEventArgs parameter. The event argument also exposes a
WorkflowInstance property. A host can resume execution of the workflow using
the Resume method of the WorkflowInstance class, or bring about a sad and early
ending with the Terminate method.

The TerminateActivity
Like the Suspend activity, the Terminate activity will halt the execution of a
workflow. Unlike a suspended workflow, a host cannot resume a terminated
workflow. We can use this activity if a workflow reaches a point where it cannot
continue and has no hope of recovery.

The Terminate activity has an Error property of type string. A host can subscribe to
the runtime's WorkflowTerminated event and examine the error. The event handler
will receive an argument of type WorkflowTerminatedEventArgs, and the runtime
will wrap the error message into a WorkflowTerminatedException, which is
available through the argument's Exception property.

If we want a specific exception to arrive in the WorkflowTerminated event handler,
we should use a Throw activity instead of a Terminate activity. However, there is
a chance that the workflow can catch a thrown exception and continue, while the
Terminate activity will always bring execution to a crashing halt.

The ThrowActivity
The Throw activity is similar to the throw statements in C# and Visual Basic — the
activity raises an exception. Why should we use a Throw activity when we could
throw from the ExecuteCode event of a Code activity? Because using a Throw activity
makes the exception an explicit piece of the workflow model.

If the exception goes unhandled and propagates out of the workflow, the
WF runtime will catch the exception, terminate the workflow, and raise the
WorkflowTerminated event. The runtime will make the exception available in the
WorkflowTerminated event arguments. The Fault property of this activity will
reference the exception to throw. We can data-bind the Fault property to a field in
our workflow, or to the property of another activity.

We can use the FaultType property to describe and restrict the exception types the
activity will throw. If the FaultType is not set, the activity can throw any type of
exception (as long as the type is System.Exception, or derived from there).

The Base Activity Library

[80]

The InvokeWorkflowActivity
The InvokeWorkflow activity will asynchronously execute another workflow. Since
the execution is asynchronous, we cannot retrieve output parameters from the other
workflow, although we could set up additional communication mechanisms with the
host to make the output available.

In the designer, we set the TargetWorkflow property to reference the workflow type
we wish to execute. We can choose from workflow types defined in the same project,
or in a referenced assembly. Once we've set the target, the designer will allow us
to set up parameter bindings by looking at the public properties of the target type.
We can bind fields and properties of our workflow as parameters for the target
workflow. Before starting the second workflow, this activity will fire an Invoking
event. We can use code inside the Invoking event handler to tweak and initialize
the parameters.

We can use the InvokeWorkflow activity to kick off workflows that execute
independently. For example, a workflow for a software bug tracking system might
need to spin off workflows for regression testing and integration testing each time a
new software build arrives.

The ParallelActivity
The Parallel activity allows multiple activities to execute at the same time. This
does not mean the Parallel activity permits parallel processing across multiple
threads only a single thread will execute inside a workflow. Instead, the Parallel activity
allows separate branches inside the activity to execute independently.

As an example, let's pretend we are writing a workflow that requires a yes or no
vote from three members of our company: the chief executive officer (CEO), the
chief technology officer (CTO), and the chief financial officer (CFO). The host will
deliver the votes to the workflow as events. We saw in the last chapter how the
HandleExternalEvent activity can wait on events from a local communication service,
so we will design our workflow to use three HandleExternalEvent activities.

We could write the workflow so that it would wait for the votes to arrive
sequentially — first the CEO, then the CTO, then the CFO. This means the CTO
couldn't vote until the CEO cast a vote, and the CFO couldn't vote until the CTO cast
a vote. If the CTO is away for a few days and can't vote, the CFO will have to wait.
A word of advice from the author — making a CFO unhappy does not increase your
chances of career advancement at the company.

Chapter 4

[81]

If the order of the votes is not important, it would make sense to let the software
collect the votes as they arrive — in any order. ����The Parallel activity as shown in the
screenshot below will listen for all three events simultaneously. Whichever officer
votes first, the workflow will process the event and then wait for the other two
events to arrive. The Parallel activity will not finish until all branches are finished
processing (in this scenario, all three events must arrive).

The DelayActivity
The Delay activity will initialize a timer and wait for the timer to expire. The Delay
activity is often used to model a time-out, as it returns control to the workflow
engine and allows other activities to execute while waiting for the timer. The
TimeoutDuration property is a TimeSpan that represents the amount of time to wait.
We can initialize the property in the designer, or programmatically by assigning an
event handler for the InitializeTimeoutDuration, shown below:

private void delayActivity1_InitializeTimeoutDuration(
 object sender, EventArgs e)
{
 DelayActivity delay = sender as DelayActivity;
 if (delay != null)
 {
 // a 5 second time span
 delay.TimeoutDuration = new TimeSpan(0, 0, 5);
 }
}

The Base Activity Library

[82]

We often find a Delay activity inside a Listen activity.

The ListenActivity
Like the Parallel activity, the Listen activity can contain multiple branches.
Unlike the Parallel activity, the goal of a Listen activity is to finish just one
branch. The branches of a Listen activity are EventDriven activities, and must
start by the branches by waiting for an event (the first child must implement the
IEventActivity interface). We'll see the EventDriven activity in more detail when
we cover state machine workflows.

Let's go back to our previous workflow example with the CEO, the CTO, and the
CFO. Previously we needed a vote from all three officers before the workflow could
continue. If we only needed a vote from one of the three officers, the Listen activity
would be a better fit. When one of the events arrives, the activity will execute the
branch associated with the event and cancel the execution of the other branches.

As alluded to earlier, we can use a Delay activity inside a Listen activity to simulate
a timeout. This arrangement is shown in the screenshot below. If the delay timer
expires before any of the other events arrive, we can take an alternative action,
perhaps by emailing a reminder to vote, or moving ahead with a default choice.
Silence is consent!

Chapter 4

[83]

The EventHandlingScopeActivity
The EventHandlingScope activity is similar to a Listen activity in that it can
have multiple branches waiting for events in parallel. We can view these branches
by right-clicking the activity and selecting View Events. The primary difference
between this activity and a Listen activity is that this event continues to listen for all
events until the main child activity (the default view) finishes execution.

Imagine we are setting up a workflow that will count employee votes over a period
of 30 minutes. We could set the main child activity of the EventHandlingScope
activity as a Delay activity, with a 30-minute timeout. We can then place event
handling activities in the event branches that listen for yes and no votes. This activity
will continue to process the yes and no events until the Delay activity completes.

The SynchronizationScopeActivity
Like the threading synchronization primitives in the .NET libraries, the
SynchronizationScope activity can serialize access to shared resources, even across
workflow instances. If we have a static (C#) or shared (Visual Basic) field in our
workflow definition, the SynchronizationScope can ensure only a single instance
will have read and write access to the field for the duration of the activity.

The SynchronizationHandles property contains the handles that the workflow will
acquire before it executes, and release upon completion. A synchronization handle is
a simple string object, and the property maintains a collection of strings. Internally,
the WF runtime will use each string as the key to a dictionary of locks. If the activity
cannot acquire all the locks specified by the handles, it will wait until it can acquire
the locks.

The ReplicatorActivity
The Replicator activity is similar to the While activity, but more sophisticated.
The Replicator can process a collection of data either sequentially or in parallel,
depending on the setting of the ExecutionType property. Think back to the example
we talked about for the Parallel activity. We needed a vote from exactly three
officers of the company before the workflow could proceed. The Replicator is a
better fit when we don't know how many events we need to process until run time.
Perhaps a user is checking off the required voters from a company-wide directory.
A Replicator can create the required number of event listeners we need from the
user's list of voters.

The InitialChildData property will hold the list of data objects for the Replicator
to process. The Replicator will create a clone of its child activity to process each
item in the child data collection. The Replicator will not finish execution until all

The Base Activity Library

[84]

the children have finished; however, there is an UntilCondition property that the
Replicator will evaluate before starting, and after completion of each child. If the
UntilCondition returns true, the Replicator will stop, even if it leaves children
unprocessed. Like other conditions in WF, the UntilCondition can be a rule
condition or a code condition.

The Replicator fires a number of useful events, including Initialized, Completed,
ChildInitialized, and ChildCompleted. The ChildInitialized event is a good
time to populate the cloned child activity with the data it needs to execute.

Local Communication Events
When it comes time for a workflow to communicate with the outside world, there are
a handful of built-in activities to do the job. The activities we discuss in this section
will communicate with local services provided by the hosting process.

For local communication to work, we need to define a contract in the form of a .NET
interface. The interface will define the methods that a workflow can invoke on a local
service, and the events that a local service can raise to a workflow.

Let's say we are working on a workflow for a bug-tracking system. At some point, a
bug might need detailed information, like a screenshot, uploaded to the application.
If the workflow needs this additional documentation, the workflow can ask the host
to upload the document. The host might upload the documents itself, but more than
likely it will notify a user that the bug requires more information. In either case, the
workflow will have to wait (perhaps a few seconds, perhaps a few days or longer),
for the uploaded document to arrive. The host can let the workflow know when the
upload is complete via an event. The following interface defines the communication
contract we need to enable this scenario. The ExternalDataExchange attribute is
required for local communication services and aids the WF runtime in identifying
this interface as a service contract.

[ExternalDataExchange]
interface IBugService
{
 bool RequestUpload(Guid id, string userName);
 event EventHandler<UploadCompletedEventArgs> UploadCompleted;
}

The two activities that interact with the interface are the
CallExternalMethodActivity and HandleExternalEventActivity.

Chapter 4

[85]

The CallExternalMethodActivity
The CallExternalMethod activity invokes a method on a local service. All we
need to do is set up the properties of the activity, as shown in the screenshot below:

The InterfaceType property should be set first, as this will allow the designer to
discover the available methods on the service. Once we set InterfaceType to the
interface we defined, we can select the method to call in the MethodName property.
The designer will then populate the Parameters area of the Properties window.
We can bind all the input parameters, and the method return value, to fields and
properties in our workflow. The uploadRequested, id, and userName fields are all
member variables in the code-behind class of the workflow.

For the CallExternalMethod activity to work, we will need to add the
ExternalDataExchangeService to the workflow runtime, and add a service that
implements our interface to the data exchange service, as shown in the code below.
The BugFlowService class implements the IBugService interface.

WorkflowRuntime workflowRuntime = new WorkflowRuntime();
ExternalDataExchangeService dataService = new
ExternalDataExchangeService();
workflowRuntime.AddService(dataService);

The Base Activity Library

[86]

BugFlowService bugService = new BugFlowService();
dataService.AddService(bugService);

The CallExternalMethod activity includes a MethodInvoking event. The event will
fire just before the activity calls the external method, and gives us an opportunity to
set up the parameters. We might add code like the following to the event:

private void callExternalMethodActivity1_MethodInvoking(
 object sender, EventArgs e)
{
 id = this.WorkflowInstanceId;
 userName = "Scott";
}

The HandleExternalEventActivity
The HandleExternalEvent activity, like the CallExternalMethod activity, has an
InterfaceType property we must set. Once we have set this property we can set the
EventName property (see the screenshot below).

Chapter 4

[87]

HandleExternalEvent is a blocking activity, meaning the activity is not going to
complete until the event arrives from a local service. If there is a chance the event
will never arrive, or if the event needs to arrive within a span of time, then it's best
to use this activity inside a ListenActivity. As we described earlier, the Listen
activity has multiple branches, and we can place a DelayActivity in one of the
branches to simulate a timeout.

The Roles property of this activity can bind to a WorkflowRoleCollection object
and allow the runtime to perform role-based authorization checks. The runtime
compares the role memberships of the incoming identity against the allowable roles
defined in the collection. The collection holds objects derived from the abstract
WorkflowRole class. WF provides two concrete implementations of WorkflowRole
with the ActiveDirectoryRole and WebWorkflowRole classes. These classes work
with Active Directory and ASP.NET 2.0 Role Providers, respectively. If authorization
fails, the runtime will throw a WorkflowAuthorizationException exception.

The Activity Generator
When working with local communication services, it's often a good idea to make
use of the activity generator. Windows Workflow includes a command-line tool
called the Windows Workflow Communications Activity Generator. This tool runs
from the command line, and you can find it in the WF install directory with the name
of wca.exe.

We can pass wca.exe the path to a .NET assembly (.dll), and the tool will look
through the assembly for interfaces decorated with the ExternalDataExchange
attribute. When the tool finds such an interface it will generate dedicated custom
activities for calling the methods and handling the events of the interface.

For our IBugService interface, the tool will generate a RequestUploadActivity
and an UploadCompletedActivity. The tool generates the activities as source code
files that we can include in our project. The activities will have their InterfaceType
and EventName or MethodName properties pre-populated, and include properties for
all parameters in the communications. Run wca.exe with no parameters to see a list
of options.

Fault Handling
Although fault handling is arguably a type of control flow, this section is dedicated
to these activities so we can dive in with more detail. Fault handling in Windows
Workflow handles exceptions that occur during execution. We can catch exceptions
with fault handlers and perhaps try to recover from the error. We might try to

The Base Activity Library

[88]

compensate for a committed transaction, or send an alert to an administrative email
address and wait for a missing file to reappear.

It is always a bad idea to blindly handle faults if we don't have a recovery plan.
This is akin to swallowing exceptions in C# or Visual Basic. If the workflow throws
an exception that we don't know how to handle, it is best to let the exception run its
course and have the runtime terminate the workflow.

The FaultHandlersActivity
The FaultHandlers activity isn't an activity we can drag from the Toolbox into the
workflow designer. Instead, the workflow designer will provide the activity for us
when the condition is right. Many composite activities (like the WhileActivity,
ListenActivity, SequenceActivity, TransactionScopeActivity, and others) can
handle faults from their child activities using a fault handlers view.

We can view the FaultHandlers activity by right‑clicking an activity and selecting
View Faults. There is also a shortcut available to view fault handlers at the workflow
level. The third tab from the left in the bottom of the workflow designer will take us
to the fault handlers for the workflow (see the screenshot below). Inside this view we
can use FaultHandler activities, discussed next.

Chapter 4

[89]

The FaultHandlerActivity
A FaultHandler activity is analogous to a catch statement in C# or Visual Basic. A
FaultHandler can trap an exception and perform processing. When we are in the
Fault Handlers view, we can drag a FaultHandler from the Toolbox into the area
saying Drop FaultHandlerActivity Here. This area is the fault handlers storyboard.
We can drop more than one FaultHandler into the storyboard, and click on
handlers inside to select the handler we want to edit. Each handler has its own set of
child activities that appear below the storyboard. We can drop activities in the area
below the storyboard to perform different types of work for each fault handler. This
is akin to the code inside a catch block.

The FaultHandlerActivity has a FaultType property. This property represents the
type of exception we want to catch. If we set the FaultType property to the System.
Exception type, we will handle all CLS-compliant exceptions. The handler will
catch all exceptions of type FaultType, or any exception deriving from FaultType.
The Fault property of this activity will let us bind the caught exception to a field
or property.

The runtime will evaluate Fault Handlers in a
left-to-right order. If the first Fault Handler has a
FaultType of System.Exception, it will catch any
exception and the runtime won't need to evaluate the other
fault handlers. This is similar to how the multiple catch
statements work in C# or Visual Basic — the catch blocks
are evaluated in the order they appear until a match is
found, and then no other catch statements are evaluated.

Transactions and Compensation
Traditional ACID (atomic, consistent, isolated, and durable) transactions are
available in Windows Workflow. Under the covers, the runtime makes use of the
Transaction class in the System.Transactions namespace. The Transaction class
can manage transactions across different types of durable stores, including Microsoft
SQL Server and other relational databases, and products like Microsoft Message
Queuing. When needed, the Transaction class can use the Microsoft Distributed
Transaction Coordinator (MSDTC) for heavy-weight two-phase commit transactions.

The Base Activity Library

[90]

The TransactionScopeActivity
Like the TransactionScope class of System.Transactions, the TransactionScope
activity will start a transaction and implicitly enlist any activities it contains into
the transaction. The TransactionOptions property controls the timeout and the
isolation level of the transaction.

If the TransactionScope activity finishes with no errors it will automatically
commit the transaction. If an exception occurs inside the scope but is not caught by a
fault handler inside the scope, the activity will abort the transaction and roll back
any work.

Compensation
In a long-running workflow, we can't leave a transaction open for hours, or days, or
weeks at a time. A transaction will lock records and could prevent other queries from
executing. Holding locks for long periods can kill scalability and bring applications
to a grinding halt.

Instead of holding locks, we will typically commit transactions as soon as possible
and move on with execution. If an error occurs at some later point, we counteract the
previously completed transaction. We might not be able to reverse the transaction,
but we might take other steps (cancel an order, credit an account) to counterbalance
the transaction.

Chapter 4

[91]

In WF, we can only formally compensate for activities that implement the
ICompensatableActivity interface. The CompensatableSequenceActivity and
the CompensatableTransactionScopeActivity are the two activities in the base
class library that implement this interface.

The CompensatableSequenceActivity
A CompensatableSequence activity functions just like a Sequence activity with the
addition of a compensation handler. We can view the compensation handler for this
activity by right‑clicking the activity and selecting View Compensation Handler (see
the screenshot below).

Inside of the compensation handler we can place activities to compensate for the
activities that ran during the normal execution of the sequence. We will see how to
trigger a compensation handler shortly.

The CompensatableTransactionScopeActivity
The CompensatableTransactionScope activity functions just like a
TransactionScope activity but with the addition of a compensation handler. We
can also view the compensation handler for this activity by ���������������������������� right‑clicking the activity
and selecting View Compensation Handler. Inside the compensation handler we
can use activities to define the logic that will compensate for the normal execution
of the activity. Remember that compensation can only take place if a compensatable
activity completes successfully.

The Base Activity Library

[92]

The CompensateActivity
The Compensate activity starts the compensation of a previously completed and
compensatable activity. We can only compensate for the activities that implement the
ICompensatableActivity interface. We described the two compensatable activities
provided by the base class library. We can also create our own custom activities that
implement the ICompensatableActivity interface.

The Compensate activity's TargetActivityName property will direct the workflow
to the ICompensatableActivity that needs compensated. The runtime will execute
the target activity's compensation handler. A Compensate activity can only exist
inside a fault handler or inside a compensation handler. When the activity is inside a
compensation handler it can direct the compensation of nested transactions.

Conditions and Rules
Two activities in Windows Workflow thrive on conditions and rules. These activities
are the Policy Activity and the Conditioned Activity Group (CAG). Although we
could have listed the CAG as a control flow element, the CAG doesn't control the
flow of execution as much as allow it to be controlled by conditions and rules.

The ConditionedActivityGroup
The CAG is a powerful activity that can use a combination of rules and code to
reach a goal. The CAG conditionally executes activities until a condition evaluates
to true. Inside of the CAG is a storyboard where we can drop activities for execution
(see the screenshot on the next page). The CAG associates a WhenCondition
with each activity in its storyboard, and the CAG will only execute an activity
if the activity's WhenCondition evaluates to true. The CAG continues to re-
evaluate the WhenCondition and re-execute the storyboard activities until its own
UntilCondition evaluates to true.

Chapter 4

[93]

The WhenCondition and UntilCondition properties can use either declarative rules
or code conditions. If we do not specify a WhenCondition for an activity, the activity
will execute only once. If we do not specify an UntilCondition for the CAG, the
CAG will continue to execute until all its activity's WhenCondition conditions
return false.

We can click on each activity in the CAG's storyboard to set its WhenCondition, and
also to preview or edit the activity in the bottom half of the CAG display. The small
button in the middle of the CAG will toggle between preview and edit modes. In
edit mode we can click on storyboard activities to set properties, or in the case of a
composite activity like the Sequence activity, we can drag additional children inside.

The CAG will revaluate its UntilCondition each time a child activity completes.
As soon as the condition returns true, the CAG will cancel any currently executing
activities and close.

The Base Activity Library

[94]

The PolicyActivity
The Policy activity is a rules engine that allows us to separate business logic from
the workflow and declaratively define business policy. A Rule Set is a collection of
rules for the Policy activity to execute, and each rule has conditions and actions. We
can edit the rules using the WF Rule Set Editor, shown in the screenshot.

Notice each rule has a priority assigned. Rules with a higher priority will execute
before rules with a lower priority. Rules with the same level priority execute in
alphabetical order.

Each rule has an If-Then-Else format. We can assign actions to both the Then and
Else results. A rule's actions can modify the fields and properties of a workflow,
or the fields and properties of an object inside the workflow. Actions can also
invoke methods.

By default, the Policy activity will execute the rule set using full forward chaining.
If a rule changes the value of a field that some previous rule depended upon, the
Policy activity will re-evaluate the previous rule. The Policy activity supports

Chapter 4

[95]

different forward chaining strategies, and each rule has a re-evaluation setting
to control the number of times it can be re-evaluated. Chapter 9 will examine the
Policy activity in great detail.

Web Services
No product would be complete today if it did not send or receive SOAP envelopes
over HTTP. WF includes a number of activities that revolve around web services,
both as a client and a server.

The InvokeWebServiceActivity
The InvokeWebService activity can call an external web service. When we drop the
activity into the workflow designer, the familiar Visual Studio Add Web Reference
dialog box will appear. This same dialog appears when we add a web reference
to any type of .NET project in Visual Studio. We merely need to browse to a Web
Service Definition Language (WSDL) document with the description of the web
service. Visual Studio will retrieve the WSDL and generate a proxy class for the web
service. We can then configure the activity with the method name to invoke, and
bind parameters to fields or properties in our workflow (see the screenshot).

The Base Activity Library

[96]

The WebServiceActivity includes Invoking and Invoked event handlers that
fire before and after the web service call, respectively. We can use these events to
pre- and post-process the parameters of the web service.

The WebServiceInputActivity
The WebServiceInput activity enables a workflow to receive a web service request.
Just like the local communication activities we described earlier, this activity will
first require us to define a contract (an interface). The activity will implement the
interface. Once we've set the InterfaceType property, we can pick a method from
the interface for the MethodName property, and then bind the incoming parameters to
fields or properties.

Visual Studio 2005 allows us to right-click a workflow project and select Publish As
Web Service. This command creates an ASP.NET project, complete with .asmx and
web.config files, which will host our workflow as a web service.

The WebServiceOutputActivity
A WebServiceOutput activity pairs with a WebServiceInput activity to respond
to a service request. We cannot use this activity without first configuring a
WebServiceInput activity in our workflow. This activity has an InputActivityName
property that will pair the activity with its input. The designer will then know
the interface and method name we are implementing, and allow us to bind the
ReturnValue property. The ReturnValue property is the web service response.

The WebServiceFaultActivity
The WebServiceFault activity allows us to raise an exception that the
runtime will package into a SOAP exception. Like the output activity we just
described, the WebServiceFault activity will pair with an input activity via the
InputActivityName property. The Fault property will reference the exception we
want to raise.

State Activities
All of the workflows we've examined so far have been sequential workflows.
Windows Workflow also supports state-machine workflows, which is where the
activities in this section come into play.

A state machine consists of a set of states. For instance, a state machine to model
the workflow of a software bug might include the states open, assigned, closed, and

Chapter 4

[97]

deferred. The workflow must always be in one of these four states. State machines
are completely event driven. Only when the workflow receives an event can the
current state transition to a new state. A state machine must have an initial state, and
optionally an ending state. When the state machine transitions to the ending state,
the workflow is complete.

State machine workflows are a good fit for modeling a process where decisions come
from outside the workflow. When we make a decision, like closing a bug, we have
a local communication service raise an event to the workflow. The workflow keeps
track of which state it is in, and which states it can transition into from the current
state. For instance, we might say that an open bug has to be assigned before it can
be closed, but it can move from the open state directly to the deferred state. The first
step in setting up a state machine is defining the states.

The StateActivity
The State activity represents one of the states in a state machine. For our bug
tracking workflow, we would have four State activities to drop into the designer —
one each for open, closed, deferred, and assigned. Unlike a sequential workflow, we
can place these activities anywhere on the design surface, because the state machine
doesn't move from one activity to the next in any specific order. We will define the
legal state transitions.

Every state machine workflow needs an initial state. We can set the initial state
using the InitialStateName property of the workflow itself (see screenshot below).
We can optionally set the CompletedStateName to a state that represents completion
of the workflow. The state machine in the screenshot below has the four State
activities for bug tracking: OpenState, AssignedState, DeferredState,
and ClosedState.

The Base Activity Library

[98]

Inside each state, we can place the activities described below. Notice we can
include a State activity inside a State activity. The recursive composition of states
allows contained states to inherit the events and behavior of their containing state.
Chapter 7 will cover these activities in more detail.

The StateInitializationActivity
The StateInitialization activity is a sequence activity that contains child
activities. When the state machine transitions to a state, the children inside the
initialization activity will execute. We can only have one initialization activity per
state. Once we've dropped this activity inside a state, we can double‑click to edit the
children. In the screenshot below, we've added an initialize activity to OpenState,
and can now add child activities of any type as children.

The StateFinalizationActivity
Like the initialize activity, the StateFinalization activity is a sequence activity
with child activities inside. When the state machine transitions out of a state, the
state's finalization activities will execute. There can be only one finalization activity
inside each state.

Chapter 4

[99]

The EventDrivenActivity
The EventDriven activity is also a sequence activity with children inside.
The EventDriven activity, however, only executes when an event arrives.
The first child activity must implement the IEventActivity interface, as the
HandleExternalEvent activity does. You might remember we described this activity
briefly when we discussed the ListenActivity.

A State activity can contain more than one EventDriven activity inside. For
example, our OpenState state will have two EventDriven activities inside — one
to handle a BugAssigned event, and one to handle a BugDeferred event. We do
not allow the OpenState to handle a BugClosed event, because we don't want to
transition from open to closed without going through the assigned state.

In the screenshot below, we've double-clicked on an EventDriven activity in
OpenState to configure an event handler for the BugAssigned event. The event is part
of a communication interface we've built with the ExternalDataExchange attribute,
just as we did earlier in the section covering the HandleExternalEvent activity. The
first activity in the EventDriven activity is, in fact, a HandleExternalEvent activity
we've configured to handle the BugAssigned event. The last activity inside the
sequence is a SetState activity, which we cover next.

The Base Activity Library

[100]

The SetStateActivity
The SetState activity transitions a state machine to a new state. In the screenshot
below, we are handling the BugAssigned event. When a bug is assigned, we want
to transition to the AssignedState, so we set the TargetStateName property
to AssignedState. The AssignedState activity will then have its own set of
EventDriven activities, each with SetState activities to transition to other states
(and hopefully one day reach the ClosedState).

The workflow view of a state machine will examine the SetState activities inside
and draw lines to represent state transitions. We can see in the screenshot below
that state machine will only transition to the ClosedState activity from the
AssignedState activity. We also see lines representing all the other state transitions.

Summary
We've been through all of the activities in the Windows Workflow base activity
library. We've seen event handling, local and remote communication, control flow,
and more. As we outlined at the beginning, these activities are generic and general-
purpose activities that can build powerful workflows and solve problems across
a variety of business domains. However, WF allows us to build custom-tailored
activities to solve our business problems, and this will be our next topic to cover.

Custom Activities
Building software with a general-purpose framework is fun, but not necessarily
productive. Building software with a framework that specializes in solving our
day-to-day problems can be fun ��� and ��� productive. We can tailor Windows Workflow
to solve our day‑to‑day problems by writing custom activities. A custom activity
might solve problems in a specific business domain such as a custom activity that
can request tests on a patient's blood sample for healthcare applications. We could
also write custom activities for a technology domain. If our applications make heavy
use of Microsoft Message Queuing (MSMQ), it would make sense to build custom
activities that interact with MSMQ.

We are going to start this chapter talking about why we would write custom
activities, and then delve into different approaches for implementing custom
activities. We will discuss how to build black box and white box activities using
composition techniques. We will also look at using inheritance to build custom
activities, and how to build validation and design-time ������������������������������ behavior���������������������� into our activities.
Along the way, we will also discuss concepts central to building activities, like
dependency properties and execution contexts. By the end of this chapter we should
be able to evaluate the tradeoffs in using composition versus inheritance, and
understand the techniques and technologies used to build custom activities.

Why Would I Build Custom Activities?
There are different motivations for building custom activities, so the answer to this
question can depend on your perspective. Three possible motivations are:

Building reusable components
Extending Windows Workflow
Building a domain-specific language

•

•

•

Custom Activities

[102]

Reusability
We would never want the same five lines of code to appear twice in any application.
Instead, we package reusable code into methods. In ASP.NET and Windows Forms
applications, we would never want to drag‑and‑drop the same five controls into
multiple forms. Instead, we write custom controls and reuse those controls in
multiple forms. When change comes along (as it inevitably does), we can make a
change in one place and see the change appear everywhere in an application, or even
across multiple applications. We can reuse logic and code in Windows Workflow by
building custom activities.

One way to build custom activities in Windows Workflow is through activity
composition. We can compose custom activities out of smaller, more primitive
activities—just as we compose custom UI controls out of smaller, more primitive
UI controls. We can package these activities into activity libraries and reuse them in
multiple workflows. Composition is about reuse.

Extensibility
The base activity library includes activities for control flow and executing workflows
with certain semantics, but we are free to build custom activities with new control
flow and execution semantics. There is nothing special about the activities inside the
base activity library—they do not use a hidden API and the WF runtime doesn't treat
Microsoft's activities any differently than it would treat our custom activities.

If a sequential workflow or state machine workflow doesn't fit our needs, we can
devise our own execution style. If the While and IfElse activities are not flexible or
expressive enough for our needs, we can write our own control flow activities, like a
ForEach activity. Extensibility is about building new primitive activities.

Domain-Specific Languages
My doctor's financial software uses the terms charges and receipts. My bank's financial
software uses the terms debits and credits. Even though both pieces of software
manage the flow of money into and out of accounts, we would confuse the end users
if we ever interchanged the two just because of their different vocabularies. One
benefit of a Domain-Specific Language (DSL) is the ability to express solutions using
the standard vocabulary of a problem domain.

However, a standard vocabulary is not the only advantage. A DSL allows us to work
at a higher level of abstraction. Let's take an example of a document management
application. One common task in document management solutions is the task of
document approval. If a programmer is writing a document approval workflow, he
or she will place and configure a HandleExternalEvent activity at the appropriate

Chapter 5

[103]

location to wait for the approval event. HandleExternalEvent is a general-purpose
activity that can handle any type of event, and it requires knowledge of interfaces,
types, and event handlers to set up properly.

On the other hand, our developer could implement a custom activity named
WaitForDocumentApproval. In addition to using the native vocabulary of the
document management domain, the custom activity would be pre-configured
to handle the proper events. The activity shields the workflow designer from
knowing about specific interfaces and types. The higher level of abstraction yields
productivity benefits.

Now that we know a handful of motivations for why we would build a custom
activity, let's look at how to build them.

How Do I Build Custom Activities?
There are two approaches to building a custom activity. One approach uses
composition and the second approach uses derivation.

The composition approach is a similar experience to authoring a workflow. We
use the designer to drag, drop, and configure activities inside a new custom
activity, and then package the custom activity into an assembly for use in other
workflow projects. The composition approach is a quick and easy path to reusable
workflow components.

In the derivation approach, we derive a new activity from the Activity class. We
can also derive from descendants of the Activity class to inherit more functionality.
We can customize the design view, validation, serialization, and code-generation
pieces of the activity. The derivation approach gives us the highest level of control
and offers a path to extending Windows Workflow with custom code.

We will examine both of these approaches, but start with the composition approach.

Activity Composition
Let's return to the bug-tracking workflow we used in Chapter 4 to see if a custom
activity can help us in building a bug-tracking application. The bug-tracking
workflow is needed to request additional documentation for a bug. To request this
documentation, the workflow communicates with a local service we built in Chapter
4 that implements the following interface:

[ExternalDataExchange]
interface IBugService
{

Custom Activities

[104]

 bool RequestUpload(Guid id, string userName);
 event EventHandler<UploadCompletedEventArgs> UploadCompleted;
}

A workflow that needs documentation would first use a CallExternalMethod
activity to invoke the RequestUpload method. Immediately afterwards,
the workflow would use a HandleExternalEvent activity to wait for an
UploadCompleted event. We need to insert and configure both of these activities
into every workflow that might request an upload. Our goal is to replace these two
activities with a single activity we customize for the job.

To get started, we'll build a workflow activity library. In the New Project dialog box
of Visual Studio 2005, we select the Workflow Activity Library project type as shown
in the screenshot below. The project type references all the WF assemblies that we'll
need, and will build an assembly that we can reference from other workflow projects.
We will give this project the name of chapter5_activities.

The activity library project will include a default activity (Activity1.cs). We can
right-click and rename this activity to GetUpload.cs. This activity uses a pure
code approach. In Chapter 2 we talked about using code only, XAML only, and a
combination of XAML with code-behind. We have the same choices when building
a custom activity. The XAML with code-behind and pure code approaches are
available from the New Item dialog box in Visual Studio.

By default, the root activity in our custom activity is a SequentialActivity. In the
design view, we can drag and drop activities from the Toolbox window inside the
sequence. In the screenshot on the next page, we've placed a CallExternalMethod
activity and a HandleExternalEvent activity inside. We've also configured these
activities to invoke the RequestUpload method and handle the UploadCompleted
events respectively. We won't configure any of the method and event parameters at
this time.

Chapter 5

[105]

We can now compile our activity library project and produce an assembly. Next,
we can create a new project to use this assembly. From the Visual Studio 2005 File
menu, we can click Add, then New Project. We will select the Sequential Workflow
Console Application as our project template and give the project the name of
chapter5_workflows. To use the custom activity we just created, we'll right-click
the new project and select Add Reference. In the Projects tab of the Add Reference
dialog box, we can select our chapter_activities project.

When we are working with a workflow, Visual Studio will find custom activities
in any assemblies we reference. The custom activities will appear in the Toolbox
window when the workflow designer is open. We can see our GetUploadActivity
activity in the following screenshot:

In the design view for our new sequential workflow, we can drop a
GetUploadActivity inside the workflow (see the screenshot overleaf). Notice the
activities inside our custom activity appear with padlock icons. We can't remove
or add child activities inside custom activities built with composition (unless the
activity is initially empty).

Custom Activities

[106]

As it turns out, we can't even modify the properties of these activities inside the custom
activity. A compiled composite activity becomes a black box. We cannot add, delete,
or modify the child activities inside this black box. As custom activity designers, this
black box behavior makes sense. We wouldn't want a workflow developer to change
the InterfaceType or the MethodName properties of the CallExternalMethod
activity. Changing these properties would break the intended functionality of our
GetUploadActivity. Our custom activity needs to maintain its integrity.

For consumers of our custom activity, the black box presents a problem.
Inside a workflow, we'll need to access the id and userName parameters of the
CallExternalMethod activity to pass the correct data to the host. These properties
are not accessible to the workflow, and the custom activity isn't usable.

As the authors of the custom activity, however, we can make some changes to make
our component usable.

Opening a Black Box
Although a composite activity does not let the workflow designer get to properties
and events inside the black box, we can promote properties from inside the black
box and expose the properties to the outside world. Property promotion allows the
author of a composite activity to decide which properties to hide from the outside
world to maintain the integrity of the activity, and which properties to expose to the
outside world to make the activity usable.

Chapter 5

[107]

Property Promotion
Property promotion establishes a connection from a property on a parent activity to a
property on one of the parent's child activities. You can think of property promotion
as moving a property (or event) up the tree of activities to expose the property from
the top level. We are going to return to our custom activity project and make the
changes we need for the activity to be successful.

First, we need to decide what members we will promote. The CallExternalMethod
activity has four candidates available for property promotion: the MethodInvoking
handler, and the ReturnValue, id, and userName parameters. Of these four, let's
choose to expose only the userName parameter. Exposing the userName property will
allow the workflow to set a value for userName that the activity will pass to the host.
The other three candidates are all implementation details we can keep hidden inside
our composite activity. For instance, our custom activity can easily set the workflow
instance ID parameter and inspect the ReturnValue without requiring assistance
from the workflow itself. The userName parameter is the only value the composite
activity will require from the workflow.

To promote the userName field, we need to open our custom activity in the designer
and right-click on the CallExternalMethod activity to open the Properties window.
In the Properties window, we click in the text box next to the userName field and
then click the ellipsis button that will appear on the right‑hand side of the text box.
The button click will open the binding dialog box shown in the following screenshot:

Property promotion adds a new property to our custom activity. The property will
have the name UserName. Once we click OK, the designer will take care of a couple
of tasks for us. First, the designer will generate the code for a dependency property
in our custom activity. Just so we know—the designer is not performing any magic.

Custom Activities

[108]

We could perform property promotion by hand. Let's look at the code the designer
generates in our custom activity's code-behind file:

public static DependencyProperty UserNameProperty =
 DependencyProperty.Register(
 "UserName",
 typeof(System.String),
 typeof(chapter5_activities.GetUploadActivity));

[DesignerSerializationVisibilityAttribute(
 DesignerSerializationVisibility.Visible)]
[BrowsableAttribute(true)]
[CategoryAttribute("Parameters")]
public String UserName
{
 get
 {
 return ((string)(base.GetValue(
 GetUploadActivity.UserNameProperty)));
 }
 set
 {
 base.SetValue(
 GetUploadActivity.UserNameProperty, value);
 }
}

The dependency property has some metadata associated via attributes, such as the
BrowsableAttribute. �� This particular piece of metadata tells the workflow designer
to let a user see the property in the Properties window. We are going to return to
dependency properties later in the chapter to examine this code in more detail.

The designer's second job was to connect the userName parameter of our
CallExternalMethod activity to this new UserName dependency property on the
parent activity. When we close the binding dialog, we'll see the userName property
looks like what we see in screenshot on the next page. This is the activity binding
syntax in WF. The activity binding tells the runtime to look at the UserName property
of the GetUploadActivity when fetching the value for this parameter. There is
now a connection between this userName parameter and the UserName dependency
property on our activity. We will return to discuss more details of activity binding in
just a bit.

Notice at the bottom of the Properties window shown in screenshot opposite, there���� is
a Promote Bindable Properties command. This command will generate dependency
properties and bindings for all of the parameters and handlers in the activity—in our
case we chose to expose only userName.

Chapter 5

[109]

Now the workflow can set the UserName property of our activity, and the value will
pass (bind) into this userName parameter for the CallExternalMethod activity.
Now we need to return to some of the implementation details we discussed earlier.
Specifically, for our activity to work, we will also need to pass an id parameter to the
external method. This parameter is the instance ID of the executing workflow. We
did not promote this parameter, so it is invisible to the outside world and we will
need to manage it ourselves. Let's add the following code to our custom activity's
code file:

private void requestUpload_MethodInvoking(object sender,
 EventArgs e)
{
 uploadID = this.WorkflowInstanceId;
}

Guid uploadID = Guid.Empty;

This code creates a private field named uploadID. The uploadID field will hold
the workflow instance ID. We set this field in a method named requestUpload_
MethodInvoking. We plan to call this method just before the CallExternalMethod
activity calls into the host process.

For this to work, we need to establish some more bindings in the Property
window for the CallExternalMethod activity. In the figure overleaf, we've set the
CallExternalMethod activity's MethodInvoking property to the requestUpload_
MethodInvoking method we just built in our code file. Our method will now fire just

Custom Activities

[110]

before the activity invokes the external method. We've also bound the activity's id
parameter to the uploadID field in our class.

The next step for our custom activity might be to promote properties from the
HandleExternalEvent activity. For instance, if the workflow depends on the
filename that is part of the incoming event arguments, we'd need a dependency
property on our custom activity to expose the filename. We could promote the entire
event argument (e)��� , or create a dependency property from scratch and expose only
the filename portion of the event arguments.

Composition Summary
We've created a reusable chunk of workflow with a custom activity. We can drop this
activity inside any workflow instead of dropping and configuring the underlying
custom activities. We've promoted properties inside the activity for the workflow
author to use. The properties allow the workflow author to parameterize the activity
for a specific job. The following screenshot shows how our custom activity appears
in a new workflow (complete with the new UserName property).

Chapter 5

[111]

Before we jump into the second approach for building custom activities, we need
to revisit the subject of dependency properties and activity binding. Dependency
properties and activity binding are both important and related pieces of
infrastructure for building custom activities and workflows in general.

Dependency Properties
The ultimate goal of a dependency property is to manage state. The dependency
property is not unique to Windows Workflow; it is also present in WF's XAML
sibling—Windows Presentation Foundation. A dependency property enables a
handful of critical features in WF:

Activity property binding
Attached properties
Meta-properties

Every class that uses a dependency property will ultimately derive from the abstract
DependencyObject class. Shown in the screenshot overleaf, the DependencyObject
provides methods to manipulate dependency properties, like GetValue and
SetValue. Also shown in the following figure is the DependencyProperty class.

•

•

•

Custom Activities

[112]

This class represents the metadata that describes a dependency property, like the
Name and OwnerType.

We've already seen some of these DependencyObject methods used when we
created a UserName property for our custom composite activity. Let's look again at a
portion of that code that the designer generated:

public String UserName
{
 get
 {
 return ((string)(base.GetValue(

 GetUploadActivity.UserNameProperty)));

 }
 set
 {
 base.SetValue(

 GetUploadActivity.UserNameProperty, value);

 }
}

Chapter 5

[113]

Our UserName property does not have a backing private field as many properties
will have. Instead, the property retrieves and sets values using the GetValue and
SetValue methods from the base class. Our activity has these methods available
because it ultimately derives from the DependencyObject class.

We never manipulate dependency properties directly; we only touch them
through these special GetValue and SetValue methods. You can think of the
DependencyObject as a gateway between property state and our code. By putting
itself in the middle, the DependencyObject can perform a great deal of magic,
including data binding, change notifications, and more.

Internally, a DependencyObject maintains a generic Dictionary of dependency
properties and their values. Remember the DependencyProperty class in the
screenshot on the previous page? An instance of this class will function as a key into
the dependency property dictionary. What follows is the rest of the code that the
designer generated for our UserName property.

public static DependencyProperty UserNameProperty =
 DependencyProperty.Register(
 "UserName", // name
 typeof(System.String), // type
 typeof(GetUploadActivity)); // owner

When our UserName property calls base.GetValue or base.SetValue, it passes
along this DependencyObject named UserNameProperty. This is the key into the
object's dictionary of dependency properties. The key provides the name of the
dependency property, as well as its type and the type of its owner.

Before we decide on when to use dependency properties versus when to use regular
properties, let's look at the features dependency properties facilitate: activity binding,
attached properties, and meta-properties.

Activity Binding
There are certainly times when we won't be able to set the value of a property
at design time. The values for some properties will only be known at run
time. For instance, we know what type of interface our composite activity's
CallExternalMethod activity will be working with, so we set the InterfaceType
property of this activity at design time. We don't know what value to use for the
userName parameter at design time, because this value won't be available until the
workflow is up and running for a specific user.

What we did for the userName parameter was to bind the parameter to a UserName
property on our composite activity. The Properties window for userName back in the
screenshot displaying the Property window for the CallExternalMethod activity

Custom Activities

[114]

in the section� Property Promotion contained the following: Activity=GetUploadAc
tivity, Path=UserName. When we call GetValue for the userName parameter, the
dependency property system will go to the GetUploadActivity activity and fetch
the value of the UserName property.

Activity binding is a powerful mechanism we can use to wire together run time
data with activity properties. This is similar to how data binding in .NET wires
together data from a data source with user interface elements in a Windows form or
web form. A common use of activity ��� binding is to���������������������������������� bind the output parameter of one
activity to an input parameter of a later activity. This technique means we don't have
the burden of shuffling data from one activity to the next.

Binding actually takes place with the ActivityBind class. The class has a Name and
a Path property that allow the SetValue and GetValue methods to find the activity
and activity member to bind against. The code generated by the workflow designer
for the userName binding we created earlier would look like the following:

ActivityBind activitybind1 = new ActivityBind();
activitybind1.Name = "GetUploadActivity";
activitybind1.Path = "UserName";

We can pass this ActivityBind object to the SetBinding method of a
DependencyObject. The SetBinding method looks just like the SetValue method,
except we pass binding information instead of an actual value of a property. Activity
binding is also available in XAML. The binding syntax uses curly brackets, as seen in
the following code snippet:

<ns0:GetUploadActivity
 x:Name="getUploadActivity1"
 UserName="{ActivityBind Workflow1,Path=userName}" />

Theoretically, we could implement the same binding behavior using normal
properties in C# or Visual Basic. We'd have to write all of the plumbing in the
property get and set methods to make the binding magic work. Dependency
properties do all of the hard work for us.

Attached Properties
We can attach a dependency property to any other object derived from
DependencyObject. This means we can extend any activity in Windows Workflow
with additional, custom properties at run time.

One scenario where attached properties are commonly used is when a parent activity
needs to append information to each of its child activities. A concrete example is
the ConditionedActivityGroup. The CAG, if you remember from Chapter 4,

Chapter 5

[115]

conditionally executes one or more child activities based on a When condition that is
associated with each child. In the workflow designer, every child activity in a CAG
appears to have its own When property, but this is an illusion created by the magic of
dependency properties. It would be silly to give every activity a When property just
so it could work inside a CAG.

Let's say we have a CodeActivity inside a CAG, and we've written a
CodeCondition method named MyCondition. In the designer, we will set the
When property of the activity to MyCondition, and the designer will generate code
equivalent to the following:

CodeCondition codecondition1 = new CodeCondition();

codecondition1.Condition +=
 new System.EventHandler<ConditionalEventArgs>(MyCondition);

codeActivity1.SetValue(

 ConditionedActivityGroup.WhenConditionProperty,

 codecondition1);

The call to SetValue ��������������������� will place the CAG's When property inside the CodeActivity's
dictionary of property values. Then When property is now attached to the
CodeActivity. Of course, XAML has a notation for attached properties too, which
we can see below:

<ConditionedActivityGroup x:Name="conditionedActivityGroup1">
 <CodeActivity x:Name="codeActivity1"
 ExecuteCode="codeActivity1_ExecuteCode">
 <ConditionedActivityGroup.WhenCondition>

 <CodeCondition Condition="MyCondition" />

 </ConditionedActivityGroup.WhenCondition>

 </CodeActivity>
</ConditionedActivityGroup>

When an activity wants to have a property that it will attach to other activities,
it can register the dependency property with the RegisterAttached method of
DependencyProperty instead of the Register method.

Meta-Properties
There are two types of dependency properties. There are meta-based properties and
instance-based properties. The value of a meta-based property must be set at design
time and can never change during run time. This means we cannot bind a meta-
property, since binding would set a value at run time. Instance-based properties can
be set at design time or at run time, and take advantage of activity binding.

Custom Activities

[116]

Meta-based properties are a safety net to ensure the integrity of an activity. For
instance, when we configured our CallExternalEvent activity earlier, we set
InterfaceType and MethodName properties. Based upon those two settings, the
designer makes other properties available for us to configure (the parameters of
the external method). Given the parameter configuration, it would be dangerous
to change the InterfaceType or MethodName properties at run time. All other
configurations would break. Thus, the CallExternalEvent activity defines these two
properties as meta-based dependency properties and they are immutable at run time.

When we call the Register method to enter a dependency property
into the DependencyProperty type catalog, we can pass an optional
PropertyMetaData object as a parameter. The constructor of this object can
take a DependencyPropertyOptions enumeration to specify if a property is a
meta-property. The following code registers a meta-property by the name of
InterfaceType:

public static DependencyProperty InterfaceTypeProperty =
 DependencyProperty.Register(
 "InterfaceType",
 typeof(Type),
 typeof(GetUploadActivity),
 new PropertyMetadata(DependencyPropertyOptions.Metadata)

);

Dependency Property Summary
An obvious question at this point is: when do we use a plain property and when
do we use a dependency property? The short answer is: when we want to define a
meta-property, attach the property, or allow intra-activity binding on the property,
we need a dependency property. All three features are significant to custom activity
development. With this in mind, let's continue to look at building custom activities
with the derivation model.

Derivation
Technically, there isn't an enormous difference between the composition
and derivation approaches for building custom activities. When we built our
GetUploadActivity earlier, the new activity did derive from the SequenceActivity
class. Composition and derivation both use inheritance. Many of the topics we'll
cover in this section we could also apply to GetUploadActivity.

Derivation versus composition is more a state of mind. In composition, we focus
on arranging child activities inside a custom activity, and we build bigger activities

Chapter 5

[117]

from smaller activities. With derivation, we focus on designing a single activity—its
properties and execution model. The derivation approach is often the low‑level
approach. Let's build a custom activity with derivation that writes to the console.

ConsoleWriteActivity
For this activity, we will start with a simple class file. No XAML, no designers, just
the following C# code:

using System;
using System.Workflow.ComponentModel;
using System.ComponentModel;
using System.Workflow.ComponentModel.Design;

namespace OdeToCode.WF.CustomActivities
{
 public class ConsoleWriteActivity : Activity
 {
 public string Text
 {
 get { return _text; }
 set { _text = value; }
 }
 private string _text;

 protected override ActivityExecutionStatus Execute(
 ActivityExecutionContext executionContext)
 {
 Console.WriteLine(Text);
 return ActivityExecutionStatus.Closed;
 }
 }
}

We've derived our activity from the System.Workflow.ComponentModel.Activity
class. Activity is the foundation for all activities in WF. Our activity has a simple
Text property. We did not make this a dependency property yet, so the property
won't be able to participate in data binding. We'll still be able to set the property to a
string literal in the workflow designer.

The most important feature of the class is the Execute method. By overriding the
Execute method, we've taken full responsibility for the behavior of this activity.
When the time comes for our activity to run, the runtime will invoke our Execute
method and we will write the Text property to the console. We then have to inform
the runtime that our activity has finished executing by returning an execution status
result of Closed.

Custom Activities

[118]

At this point, we can compile the custom activity. If we then create a new workflow
and open the workflow designer, this new activity should appear in the Toolbox (of
course, we need a reference to the assembly containing the activity). If we drag the
new activity from the Toolbox and drop it into a workflow, the activity will look
similar to activities from the base class library (see the screenshot below).

Notice the Text property of our activity is available in the Properties
window (although the property appears in a category named Misc). We can
control design‑time features of our properties with attributes in the System.
ComponentModel and System.Workflow.ComponentModel namespaces. For
instance, adding the highlighted code to our Text property provides a default value,
a description, and a category for the property.

[DefaultValue("")]

[Description("The text to write to the console")]

[Category("Activity")]

public string Text
{
 get { return _text; }
 set { _text = value; }
}

Attributes are not just for our properties. We can control our activity's behavior and
appearance with attributes, too.

Chapter 5

[119]

Activity Components
We can associate activity components with our activity to tweak its behavior.
Two important component types are activity designers and activity validators.
We associate components with an activity using attributes. Obviously, these
components are optional since we have a working custom activity that did not use
any components. Nevertheless, most non-trivial custom activities will use these
components to enhance the designer experience.

What happens if a workflow author never assigns a value to the Text property of
our custom activity? Our ConsoleWrite activity would not be useful without a
valid Text property, so we'd have to assume the author is making a mistake. If we
associate a validator with our activity, we could give the author feedback about
the problem.

Activity Validators
Activity validators execute during design and compilation to ensure our activity has
the proper configuration for execution at run time. To perform validation we need
to derive a new class from the ActivityValidator class and override the Validate
method. The following Validate method will make sure our custom control has a
non-empty Text property:

public override ValidationErrorCollection Validate(
 ValidationManager manager, object obj)
{
 ValidationErrorCollection errors = base.Validate(manager, obj);

 ConsoleWriteActivity activity = obj as ConsoleWriteActivity;

 if (activity.Parent != null &&
 String.IsNullOrEmpty(activity.Text))
 {
 errors.Add(
 ValidationError.GetNotSetValidationError("Text"));
 }

 return errors;
}

We add all validation errors to a ValidationErrorCollection and return the
collection to the caller. Notice we check to see if the activity has a parent activity.
This is because the Validate method will execute when we are compiling the
custom activity itself. During that time, the activity will have a null Text ������������� property. If
the activity has a parent, then we can assume the activity is inside of a workflow and
needs validation.

Custom Activities

[120]

We attach the validator to our custom activity using an ActivityValidator
attribute.

[ActivityValidator(typeof(ConsoleWriteValidator))]

public class ConsoleWriteActivity : Activity
{
 // ...
}

Activity validators are not limited to checking properties—we could check anything.
For instance, we might decide that our custom activity should only appear as the
child activity of a While activity. We could check the parent property's type and raise
a validation error if the type is not a While activity.

Activity Designers
Activity designers control the appearance and behavior of an activity at design time.
We can derive a class from ActivityDesigner and override its virtual methods. By
overriding the OnPaint method, we can draw our activity's shape on the designer
surface. We can also override many of the methods familiar to Windows UI
developers—OnMouseDown, OnDragOver, and more. The following code implements
a designer for our custom activity:

public class ConsoleWriteDesigner : ActivityDesigner
{
 ConsoleWriteActivity _activity;

 protected override void Initialize(Activity activity)
 {
 _activity = activity as ConsoleWriteActivity;
 base.Initialize(activity);
 }

 protected override Size OnLayoutSize(
 ActivityDesignerLayoutEventArgs e)
 {
 return new Size(120, 70);
 }

 protected override void OnPaint(
 ActivityDesignerPaintEventArgs e)
 {
 e.Graphics.FillRectangle(Brushes.Black,
 Location.X, Location.Y,
 Size.Width, Size.Height);

 StringFormat format = new StringFormat();

Chapter 5

[121]

 format.Alignment = StringAlignment.Center;

 Rectangle rect = new Rectangle(Location.X, Location.Y,
 Size.Width, 15);
 e.Graphics.DrawString(Activity.QualifiedName,
 DesignerTheme.Font,
 Brushes.Yellow, rect, format);

 using(Font font = new Font("Lucida Console", 7))
 {
 e.Graphics.DrawString("> " + _activity.Text, font,
 Brushes.White, rect.X, rect.Y + 20);
 }
 }
}

The Initialize method gives us an opportunity to obtain a reference to our activity.
The OnLayoutSize method lets us tell the designer how much space our activity will
take on the drawing surface. In the OnPaint method we try to simulate the look of
a small console window. We'll draw a black background and write out the activity's
Text property in a white font. The result is in the screenshot below:

Of course, before the designer will work we need to associate our custom activity
with the designer.

Custom Activities

[122]

[ActivityValidator(typeof(ConsoleWriteValidator))]
[Designer(typeof(ConsoleWriteDesigner))]

public class ConsoleWriteActivity : Activity
{
 // ...
}

The custom activity we've built in this section is relatively simple. If we
want to build advanced custom activities, we'll need to learn more about the
ActivityExecutionContext class we saw earlier in our activity's Execute method.
We also need to learn more about the life cycle of activities.

Activity Execution
Every activity in Windows Workflow must be in one of six states. These states
are represented by the ActivityExecutionStatus enumeration: Initialized,
Executing, Closed, Canceling, Compensating, and Faulting. All activities begin
in the� Initialized state, and all activities end in the Closed state. The possible state
transitions are shown in the figure below:

There are a couple of important comments to make about this diagram. First,
the only way for an activity to transition to the Closed state is for the activity to
announce to the workflow runtime that it is finished executing. An activity makes
this announcement by returning ActivityExecutionStatus.Closed from one of
the virtual methods discussed in the next paragraph.

All other state transitions coincide with a virtual method call to an activity. For
example, the runtime invokes an activity's Execute method when the activity
reaches the Executing state. The runtime invokes the Cancel method when the

Chapter 5

[123]

activity reaches the Canceling state. The methods and their associated state are
listed in the table below:

Method State
Initialize Initialized
Execute Executing
Cancel Canceling
HandleFault Faulting
Compensate Compensating

The Execute, Cancel, HandleFault, and Compensate methods all return
ActivityExecutionStatus as a result. Returning ActivityExecutionStatus.
Closed from any of these methods will transition the activity to the Closed state.
It is not possible to make other transitions using the return value of these methods.
For instance, returning ActivityExecutionStatus.Canceling from the Execute
method will not move the activity to the Canceling state—the WF runtime would
throw an exception. An activity can only hold its current state, or announce it is
complete. The WF runtime arranges all other transitions.

Another important observation about the state diagram in the screenshot on the
previous page is that once an activity reaches the Closed state, it can never go back
to the Executing state. Windows Workflow treats each activity as a unit of work.
When an activity closes, it is complete. If transactions are involved, the runtime
may decide to reverse the unit of work by moving the activity to the Compensating
state, but the activity may never again initialize or execute. This fact has implications
for composite activities that manage the execution of child activities. Let's turn our
attention from execution status to execution context.

Execution Context
Let's take a quick look at the Execute method of our custom activity again:

protected override ActivityExecutionStatus Execute(
 ActivityExecutionContext executionContext)
{
 Console.WriteLine(Text);
 return ActivityExecutionStatus.Closed;
}

We see the Execute method returns an ActivityExecutionStatus of Closed to tell
the workflow runtime it is complete. But what is this incoming parameter of type
ActivityExecutionContext? An ActivityExecutionContext (AEC)

Custom Activities

[124]

represents the execution environment of an activity. The AEC object is a gateway
to the services inside the WF runtime (it provides a generic GetService method),
and provides methods for scheduling the execution of activities (ExecuteActivity,
CloseActivity, CancelActivity). The AEC is shown in the class diagram below:

Understanding how to use the AEC is important if we have child activities to manage.

Custom Composite Activities
When we override the Execute method, we become responsible for managing the
execution of our child activities. We have to manage this execution by coordinating
with the WF runtime, and this coordination takes place using the AEC. We would
never want to call the Execute method of a child activity directly because the
Windows Workflow runtime will not be aware of what is happening with the
activity. Instead of calling Execute directly, we schedule execution of a child activity
using the AEC's ExecuteActivity method.

The WF runtime then works with the AEC to schedule activity execution and enforce
rules. For instance, the runtime would not let us use ExecuteActivity to run an
activity that is already in the Closed state. Such an operation would violate the legal
state transitions for an activity and results in an exception.

If we were deriving a custom activity from the CompositeActivity class, our
Execute method would follow the pattern in the code below:

protected override ActivityExecutionStatus Execute(
 ActivityExecutionContext executionContext)
{
 _currentIndex = 0;

Chapter 5

[125]

 Activity child = EnabledActivities[0];
 child.Closed +=
 new EventHandler<ActivityExecutionStatusChangedEventArgs>
 (child_Closed);
 executionContext.ExecuteActivity(child);

 return ActivityExecutionStatus.Executing;

}

Here we are looking at our child activities through the EnabledActivities
collection provided by our base class. We pull the first child activity from the
collection and wire up an event handler for its Closed event. We then ask the WF
runtime to schedule the activity for execution with the ExecuteActivity method.
We need to return a status of Executing at this point, because we need to wait for
all of the child activities to execute before we close our activity. Returning a status
of Executing is common for activities that need to wait on an event. In this case we
will be waiting for our first child activity to close, but we could also be waiting for a
message to arrive in a queue.

When the child fires its Closed event, we need to continue the above pattern
by fetching the next child activity (if any), subscribing to the Closed event, and
scheduling the child for execution.

void child_Closed(object sender,
 ActivityExecutionStatusChangedEventArgs e)
{
 ActivityExecutionContext context = sender
 as ActivityExecutionContext;
 e.Activity.Closed -= child_Closed;
 _currentIndex++;

 if (_currentIndex < EnabledActivities.Count)
 {
 Activity child = EnabledActivities[_currentIndex];
 child.Closed +=
 new EventHandler<ActivityExecutionStatusChangedEventArgs>
 (child_Closed);
 context.ExecuteActivity(child);

 }
 else
 {
 context.CloseActivity();

 }
}

Custom Activities

[126]

Before we look for the next child to run, we unsubscribe from the Closed event
of the child that just finished. If we have no enabled activities left to run, we can
announce to the runtime that we have completed execution by invoking the AEC's
CloseActivity event.

The above code moves sequentially through a collection of child activities—this
is similar to how a SequenceActivity would behave. If instead we are writing a
custom activity to loop over an activity multiple times, we need to use a different
approach. Remember, each activity only reaches the Executing state once. If we need
to execute an activity more than once we need to create a new execution context.

If we think of how the While activity executes, we are tempted to think the While
activity executes the same activity multiple times. In reality, the While activity
spawns a new ActivityExecutionContext each time it executes its child activity.
Spawning an AEC creates a clone of the child activity. The original child activity will
be known as the template activity, and each iteration of the while loop will create a
copy of the template. This process is visualized in the screenshot below:

The essence of the While activity would follow the pattern in the code below:

 ActivityExecutionContextManager manager;
 manager = executionContext.ExecutionContextManager;

 ActivityExecutionContext newContext;
 newContext = manager.CreateExecutionContext(EnabledActivities[0]);
 newContext.Activity.Closed +=
 new EventHandler<ActivityExecutionStatusChangedEventArgs>
 (Activity_Closed);
 newContext.ExecuteActivity(newContext.Activity);

Chapter 5

[127]

Given the context the runtime passes to the activity, we pull out the context manager
and create a new context for our child activity with the CreateExecutionContext
method. Using this new context we subscribe to the Closed event, and schedule
the child to run. The CreateExecutionContext method will clone the activity we
pass as a parameter. This is a deep clone, so if EnabledActivities[0] is itself
a composite activity, the method will clone the composite activity and all of the
composite activity's children.

Windows Workflow uses spawned execution contents to manage compensation.
Each activity represents exactly one unit of work. If the activity inside the While
activity needs to perform compensation, it does so by forcing each cloned activity
to compensate its particular unit of work. If the While activity behaved differently
and executed the same activity repeatedly, these units of work would be lost,
and compensation would be impossible. Remember to use this pattern with
CreateExecutionContext when creating a custom control with a looping
control flow.

Summary
In this chapter we've looked at two techniques for building custom activities in
Windows Workflow. Using composition, we can quickly build a reusable piece of
workflow logic. Although a custom activity becomes a black box inside, we can
expose the details a workflow author would need to configure our component using
dependency properties and activity binding.

Derivation was a second approach to building a custom activity. With derivation, we
override the Execute method of an activity and take complete control of its execution
logic. Derivation allows us to build new forms of control flow and new execution
semantics. With all custom activities we can add activity components to perform
validation and provide custom designer ��� behavior����������������������������������� . We associate activity components
with an activity using attributes.

Workflow Hosting
Windows Workflow is a runtime and not an application. A host process must load
and launch the workflow runtime before starting a workflow. The host process tells
the runtime the types of workflows to create, and the runtime manages the life cycle
of the workflows and notifies the host process about important life cycle events, such
as workflow completion and termination. The runtime isn't particular about the type
of host it lives inside. The host process could be a smart client application running on
an office desktop ��� machine�� , or an ASP.NET worker process running on a server in the
rack of a data ��� center��� . All the host processes needs is the ability to load the .NET 3.0
Workflow assemblies.

A host can also customize the workflow runtime by layering additional services on
top of the runtime's base feature set. These services can provide persistence support
for long-running workflows, tracking support for monitoring workflow execution,
and more. Recall the ExternalDataExchangeService we've used in previous
chapters. We added this service to the runtime when we needed communication
between a workflow and its host process. Not all applications will require this
feature, so the service is an optional component we add as needed.

In this chapter, we are going to take a closer look at the Windows Workflow runtime
and its available services. We'll start with the logging, tracing, and configuration
options available for the workflow runtime. Next, we'll look at the scheduling
services, which provide threads for the runtime to execute workflows. We will also
examine persistence services, which allow us to save workflow state information
to a durable store. Finally, we'll cover tracking services that allow us to monitor
workflow execution.

The Workflow Runtime
We've used the runtime in previous chapters, but let's review what we've learned so
far. The WorkflowRuntime class is the host's gateway to Windows Workflow. A

Workflow Hosting

[130]

host creates an instance of the class, and then subscribes to one or more of the events
mentioned in the table below. These events report state changes for all workflow
instances that the runtime is executing.

Name Occurs
WorkflowAborted When an instance aborts
WorkflowCompleted When the instance completes
WorkflowCreated When a successful call to CreateWorkflow completes
WorkflowIdled When a workflow enters an idle state
WorkflowLoaded When a persistence service restores a workflow instance
WorkflowPersisted When a persistence service saves a workflow
WorkflowResumed When workflow execution continues after a suspension
WorkflowStarted When a workflow firsts starts execution

The code required to create the runtime and subscribe to events is relatively
straightforward. The following example creates the runtime, subscribes to the
WorkflowCompleted and WorkflowTerminated events, and then runs a new
workflow instance.

using(WorkflowRuntime runtime = new WorkflowRuntime())
using(AutoResetEvent reset = new AutoResetEvent(false))
{
 runtime.WorkflowCompleted += delegate { reset.Set(); };
 runtime.WorkflowTerminated += delegate { reset.Set(); };
 runtime.StartRuntime();

 WorkflowInstance instance;
 instance = runtime.CreateWorkflow(typeof(SimpleWorkflow));
 instance.Start();
 reset.WaitOne();
}

The WorkflowRuntime class provides public methods like the CreateWorkflow and
StartRuntime methods seen above, to manage the environment and the workflows.
These methods can start and stop the runtime, create and retrieve workflows, and
add and remove services inside the runtime. We'll be exploring some of these
methods in more detail later.

Typically, we wouldn't create a runtime just to execute a single workflow. Most
applications will keep the runtime around for the life of the process and run
multiple workflows. However, we want to use this simple bit of code to demonstrate
configuration and logging features of the WF runtime.

Chapter 6

[131]

Workflow Runtime Logging
The .NET Framework provides a tracing API in the System.Diagnostics
namespace. Windows Workflow uses this tracing API to log information about
what is happening inside the runtime. Trace information is far more detailed than
the information provided by the public events of the WorkflowRuntime class. To
get to the trace information we first need to enable one or more trace sources in the
workflow runtime.

When to Use Tracing
Tracing isn't used during normal operation of an
application as it can create performance bottlenecks.
However, tracing can be invaluable when tracking down
performance problems or the cause of an exception.
We can't use a debugger to step into the code of the
WF runtime, but we can enable logging to see what is
happening inside.

There are five trace sources available in WF. Each trace source supplies diagnostic
information from a different functional area of Windows Workflow. We can enable
these sources in code, or inside the application's configuration file. The following
configuration file will configure all five trace sources:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <switches>

 <add name="System.Workflow.Runtime" value="All" />
 <add name="System.Workflow.Runtime.Hosting" value="All" />
 <add name="System.Workflow.Runtime.Tracking"
 value="Critical" />
 <add name="System.Workflow.Activities" value="Warning" />
 <add name="System.Workflow.Activities.Rules" value="Off" />
 <add name="System.Workflow LogToFile" value="1" />		

 </switches>
 </system.diagnostics>
</configuration>

Inside the <switches> section we see the name of each trace source. Each source
supplies information from a different area; for example, when a workflow is
evaluating the rules inside a rule set, we will see diagnostic information coming from
the System.Workflow.Activities.Rules trace source.

Workflow Hosting

[132]

We can configure each trace source with a value indicating the amount of information
we need. The available values are Critical, Error, Warning, Information, and All.
A value of All tells the trace source to give us every available bit of trace information.
A value of Critical tells the trace source to publish only information about
critical errors.

The last entry inside this section (LogToFile) is a trace switch that tells WF to send all
trace output to a log file. The log file will have the name of WorkflowTrace.log, and
will appear in the working directory of the application. The screenshot below shows
the contents of the log file after running our sample code with the above configuration.
Each line of output contains the trace source name and a textual message. In this
sample, all trace information came from the System.Workflow.Runtime source.

When we are inside the Visual Studio debugger, this trace information will
also appear in the Output window of Visual Studio. If we want to send logging
information to another destination, we can create a new trace listener. We can
create trace listeners in the configuration file or in code. A trick for console-mode
applications is to send trace information to the console with the following code:

TraceListener console;

console = new TextWriterTraceListener(Console.Out, "console");

Trace.Listeners.Add(console);

using(WorkflowRuntime runtime = new WorkflowRuntime())
using(AutoResetEvent reset = new AutoResetEvent(false))
{

Chapter 6

[133]

 // ...run the workflow
}

Before the above code will work we must configure the workflow runtime to
send trace information to trace listeners. Placing the following XML inside the
<switches> section will send trace information to all trace listeners.

<add name="System.Workflow LogToTraceListeners" value="1" />

Diagnostics and tracing aren't the only features of the runtime. We are now going to
examine the configuration of services inside the runtime.

Workflow Runtime Configuration
There is an imperative approach to adding services to the runtime, and a
declarative approach:

The declarative approach configures services using the application's
configuration file.
The imperative approach creates services in code and adds them to the
runtime with the AddService method of the WorkflowRuntime class.

We'll see examples of both approaches, but let's look at details of the
declarative approach.

Workflow Configuration Sections
In the .NET configuration system, different section handlers manage different
sections of the configuration file. WF provides the WorkflowRuntimeSection class to
handle its specialized configuration section. What follows is a skeleton configuration
file that configures a section handler and provides a section to initialize the WF
runtime.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <configSections>
 <section
 name="MyRuntime"
 type="System.Workflow.Runtime.Configuration.
 WorkflowRuntimeSection, System.Workflow.Runtime,
 Version=3.0.00000.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 </configSections>

 <MyRuntime>

•

•

Workflow Hosting

[134]

 <CommonParameters>
 <!-- add parameters used by all services -->
 </CommonParameters>
 <Services>
 <!-- add services -->
 </Services>
 </MyRuntime>

</configuration>

In the configuration listing above, we've assigned the WorkflowRuntimeSection
class as a section handler for the MyRuntime section. This assignment takes place
inside the <configSections> element. When the .NET runtime needs to read the
MyRuntime section, it will instantiate a WorkflowRuntimeSection to do the work.

The MyRuntime section contains the actual workflow runtime configuration. A
workflow configuration section contains two child nodes. The CommonParameters
node holds name and value pairs that will be available to all the workflow services. If
we have multiple services that need the same database connection string, we can add
the connection string once inside CommonParameters instead of copying the string
for each individual service. The Services node in this section contains the service
types we add to the workflow runtime.

To have a workflow runtime pick up the correct configuration settings, we need to
point the runtime at the right configuration section. We do this by passing the section
name as a parameter to the constructor of the WorkflowRuntime class. The code below
will initialize the runtime with the configuration settings in the MyRuntime section.

WorkflowRuntime runtime = new WorkflowRuntime("MyRuntime")

We can place multiple workflow configuration sections
inside of a configuration file. Each section will need a
section handler defined with a name attribute that matches
the element name of a workflow configuration section. The
type attribute for the section handler is always the fully
qualified name of WorkflowRuntimeSection class.

It's possible to start more than one workflow runtime inside an application. We can
configure each runtime differently by providing multiple configuration sections. The
ability to use multiple runtimes is useful when workflows need different execution
environments. We'll see an example in the next section when we talk about the
workflow scheduling services.

Chapter 6

[135]

Scheduling Services
Scheduling services in WF are responsible for arranging workflows onto
threads for execution. The two scheduling services provided by WF are the
DefaultWorkflowSchedulerService and the ManualWorkflowSchedulerService.
If we don't explicitly configure a scheduling service, the runtime will use the default
scheduler (DefaultWorkflowSchedulerService). Both classes derive from the
WorkflowSchedulerService class. We can derive our own class from this base class
and override its virtual methods if we need custom scheduling logic.

The workflow runtime invokes the Schedule and Cancel methods to plan workflow
execution. The default scheduling service will schedule workflows to run on
threads from the process-wide CLR thread pool. This is why workflows execute
asynchronously on a background thread by default, and why our example waits
for the workflow to finish by blocking the main thread with an AutoResetEvent.
A host using the manual scheduling service must donate threads to the workflow
runtime. The runtime will use a donated thread to execute a workflow. We can use
the manual scheduling service to execute workflows synchronously.

Scheduling Services and Threads
Let's take a simple workflow with a single code activity inside. The code activity will
invoke the only method in our code-behind class, shown overleaf.

Workflow Hosting

[136]

public partial class SimpleWorkflow : SequentialWorkflowActivity
{
 private void codeActivity1_ExecuteCode(object sender,
 EventArgs e)
 {
 Console.WriteLine("Hello from {0}", this.QualifiedName);
 Console.WriteLine(" I am running on thread {0}",
 Thread.CurrentThread.ManagedThreadId);
 }
}

To see the difference between the two scheduling services, we will run the simple
workflow once with the manual scheduler, and once with the default scheduler. The
following code will replace the sample workflow driver we wrote earlier. In this
example, we are adding the scheduling services to the workflow runtime using code
(the imperative configuration approach).

WorkflowRuntime runtime1 = new WorkflowRuntime();
WorkflowRuntime runtime2 = new WorkflowRuntime();

ManualWorkflowSchedulerService scheduler;
scheduler = new ManualWorkflowSchedulerService();
runtime1.AddService(scheduler);

WorkflowInstance instance;
instance = runtime1.CreateWorkflow(typeof(SimpleWorkflow));

Console.WriteLine("Setting up workflow from thread {0}",
 Thread.CurrentThread.ManagedThreadId);

instance.Start();
scheduler.RunWorkflow(instance.InstanceId);

instance = runtime2.CreateWorkflow(typeof(SimpleWorkflow));
instance.Start();

We have two workflow runtimes active in this example. We configure runtime1 to
use the manual workflow scheduler. We don't explicitly configure runtime2 with
a scheduler, so this runtime will use the default scheduler. Our code prints out the
current thread ID before executing any workflows.

Notice how running a workflow with the manual scheduler is a two-step process.
First, we must schedule the workflow to run by calling Start on the workflow
instance. Calling Start only prepares the runtime for this instance and does
not actually run the workflow. To have the workflow execute we explicitly call
RunWorkflow on the manual scheduling service and pass an instance ID. The manual
service will use the calling thread to execute the workflow synchronously. This is
how a host donates a thread.

Chapter 6

[137]

With the default scheduling service in runtime2, we only need to call Start on our
workflow instance. The default scheduler will automatically queue the workflow to
run on a thread from the thread pool. We can see the different threads by running
the program and observing the output. When using runtime1 the workflow will
execute on the same thread as the calling program. When using runtime2 the
workflow will execute on a different thread.

Scheduling Services and Configuration
One advantage to configuring our runtimes using the application configuration
file is that we can change services and service parameters without recompiling an
application. Let's see what our last program might look like if we used the following
configuration file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section
 name="ManualRuntime"

 type="System.Workflow.Runtime.Configuration.
 WorkflowRuntimeSection,System.Workflow.Runtime,
 Version=3.0.00000.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 <section
 name="DefaultRuntime"

 type="System.Workflow.Runtime.Configuration.
 WorkflowRuntimeSection, System.Workflow.Runtime,
 Version=3.0.00000.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 </configSections>

 <��������������ManualRuntime�>
 <Services>
 <add type= "System.Workflow.Runtime.Hosting.
 �������������������������������ManualWorkflowSchedulerService�,
 System.Workflow.Runtime, Version=3.0.00000.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"

Workflow Hosting

[138]

 useActiveTimers="true"/>

 </Services>
 </ManualRuntime>

 <���������������DefaultRuntime�>
 <Services>
 <add type="System.Workflow.Runtime.Hosting.
 DefaultWorkflowSchedulerService�,
 System.Workflow.Runtime, Version=3.0.00000.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"
 ������������������������������� maxSimultaneousWorkflows="3" ��/>
 </Services>
 </DefaultRuntime>
</configuration>

Notice we have two workflow configuration sections with a section handler for
each section. The ManualRuntime section configures the manual scheduler and
the DefaultRuntime section configures the default scheduler. Each service has an
additional configuration parameter. We'll return to discuss these parameters. We
must change our code to use this configuration file.

WorkflowRuntime runtime1 = new WorkflowRuntime("ManualRuntime");

WorkflowRuntime runtime2 = new WorkflowRuntime("DefaultRuntime");

WorkflowInstance instance;
instance = runtime1.CreateWorkflow(typeof(SimpleWorkflow));

Console.WriteLine("Setting up workflow from thread {0}",
 Thread.CurrentThread.ManagedThreadId);

instance.Start();

ManualWorkflowSchedulerService scheduler;

scheduler = runtime1.GetService<ManualWorkflowSchedulerService>();

scheduler.RunWorkflow(instance.InstanceId);

instance = runtime2.CreateWorkflow(typeof(SimpleWorkflow));
instance.Start();

This code initializes each runtime by passing in a configuration section name. The
primary difference in this code is how we obtain a reference to the manual scheduling
service. Since we didn't create the instance explicitly, we need to ask the runtime for a
reference. The generic GetService method of the WorkflowRuntime class will find and
return the service with a type matching the generic type parameter.

Chapter 6

[139]

Scheduling Parameters
Each scheduling service has a parameter to tweak its behavior. The manual scheduler
has a useActiveTimers parameter we can set in the configuration file, or pass as a
parameter to the service's constructor. When useActiveTimers is false (the default),
the host is responsible for resuming workflows after any DelayActivity expires.
When the parameter is true, the service will set up a background thread and use in-
memory timers to resume workflow execution automatically.

The default scheduler has a maxSimultaneousWorkflows parameter. This parameter
controls the maximum number of workflow instances running concurrently in the
thread pool. The default value on a uni-processor machine is 5, and on a multi-
processor machine is 5 * Environment.ProcessorCount * 0.8.

The processes-wide CLR thread pool has an upper limit on the number of worker
threads it will create. The default maximum is 25 * the number of processors on
the machine. For applications running a high volume of workflows, tweaking the
maxSimultaneousWorkflows parameter might be necessary to achieve a balance
between workflow throughput and the availability of free threads in the thread pool.
Starving the thread pool by having the workflow runtime use too many threads can
result in deadlocks and application hangs.

Choosing the Right Scheduling Service
With two scheduling services available, an obvious question is — which scheduling
service is the right service to use? Most smart client applications will work well
with the default scheduling service. Applications written with Windows Forms and
Windows Presentation Foundation technologies will want to execute workflows
asynchronously on thread-pool threads and keep the user interface responsive.

Server-side applications generally work differently. A server application wants to
process the maximum number of client requests using as few threads as possible.
The ASP.NET runtime in web applications and web services already processes
HTTP requests using threads from the thread pool. The asynchronous execution of
workflows using the default scheduler would only tie up an additional thread per
request. Server-side applications will generally want to use the manual scheduler
and donate the request thread for workflow execution.

Persistence Services
Persistence services solve the problems inherent in executing long-running
workflows. Many business processes take days, weeks, and months to complete. We
can't keep workflow instances in memory while waiting for the accountant to return
from the beaches of Spain and approve an expense report.

Workflow Hosting

[140]

Long-running workflows spend the majority of their time in an idle state. The
workflow might be idle waiting for a Delay activity to finish, or for an event to arrive
in a HandleExternalEvent activity. When a persistence service is available, the
runtime can persist and then unload an idle workflow. Persistence saves the state of
the workflow into long-term storage. When the event finally arrives, the runtime can
restore the workflow and resume processing.

The workflow runtime decides when to persist workflows, and the persistence
service decides how and where to save the workflow state. The runtime will ask the
persistence service to save a workflow's state when a workflow goes idle. An idle
workflow is a workflow that has no activities to execute and is waiting for external
events to arrive or delay activities to expire. The runtime will also ask the persistence
service to save a workflow's state when the workflow reaches the following
conditions.

When an atomic transaction inside a TransactionScope activity or
CompensatableTransactionScopeActivity activity completes
When the host application calls the Unload or RequestPersist methods on a
WorkflowInstance object
When a custom activity with the PersistOnClose attribute completes
When a CompensatableSequence activity completes
When a workflow terminates or completes

The last condition might be surprising. A terminated or completed workflow
can't perform any more work so there would be no need to reload the workflow.
However, a persistence service can use the opportunity to clean up workflow state
left behind from previous operations. A persistence service that saves workflow state
into a database record, for instance, could delete the record when the workflow is
finished executing. Alternatively, a persistence service could save the workflow state
to use for audit purposes at some time in the future.

Persistence Classes
All persistence services derive from the WorkflowPersistenceService class.
This class defines abstract methods we need to implement if we write a custom
persistence service. The abstract methods of the class appear in italics in the
screenshot on the next page. The base class also provides some concrete methods
for a derived class to use. GetDefaultSerializedForm, for instance, accepts an
Activity as a parameter and returns an array of bytes representing the serialized
activity. To serialize an entire workflow we would need to pass the root activity of
the workflow to this method.

•

•

•

•

•

Chapter 6

[141]

Windows Workflow provides one persistence service out of the box — the
SqlWorkflowPersistenceService. The SQL persistence service saves workflow
state into a Microsoft SQL Server database and is the focus for the rest of this section.

The SqlWorkflowPersistenceService
To get started with the SQL persistence service we'll need a database. We can use an
existing database, or we can create a new database using Enterprise Manager, Query
Analyzer, or the new SQL Server Management Studio for SQL Server 2005. We can
also use the command-line sqlcmd.exe (for SQL Server 2005), or osql.exe (for SQL
Server 2000).

Once a database is in place, we'll need to run the Windows Workflow SQL
persistence scripts, which create the database objects needed by the persistence
service. We can find these scripts underneath the Windows Workflow installation
directory. Since WF is installed as part of the .NET 3.0 runtime, the location will
look like C:\WINDOWS\Microsoft.NET\Framework\v3.0\Windows Workflow
Foundation\SQL\EN.

The SQL scripts are SqlPersistenceService_Schema.sql and
SqlPersistenceService_Logic.sql. We need to run the schema file first. The
schema file will create the tables and indexes in the database. The logic file creates
a handful of stored procedures for the persistence service to use. The screenshot
overleaf demonstrates how we can set up a persistence database using sqlcmd.exe.
We first create a database, and then run the two script files using the :r command
of sqlcmd.exe.

Workflow Hosting

[142]

SQL Persistence Service Configuration
Once we have a database with the persistence schema and logic inside, we can add
the persistence service to the workflow runtime. We'll add the service declaratively
using the following configuration file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <configSections>
 <section
 name="WorkflowWithPersistence"
 type="System.Workflow.Runtime.Configuration.
 WorkflowRuntimeSection, System.Workflow.Runtime,
 Version=3.0.00000.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 </configSections>

 <WorkflowWithPersistence>
 <CommonParameters>
 <add name="ConnectionString"
 value="Data Source=(local);Initial Catalog=WorkflowDB;
 Integrated Security=true"/>
 </CommonParameters>
 <Services>
 <add type="System.Workflow.Runtime.Hosting.
 SqlWorkflowPersistenceService,
 System.Workflow.Runtime, Version=3.0.00000.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"
 UnloadOnIdle="true" />
 </Services>
 </WorkflowWithPersistence>

</configuration>

Chapter 6

[143]

We've added the database connection string under CommonParameters. This will
allow us to share the connection string with other services that require database
connectivity. The SqlWorkflowPersistenceService appears underneath the
Services node. There are parameters available to fine-tune the behavior of the
service. We've attached one parameter in this example — the UnloadOnIdle
parameter. The available parameters are shown in the table below:

Parameter Name Description
EnableRetries When true, the service will retry failed database

operations up to 20 times or until the operation
completes successfully. The default is false.

LoadIntervalSeconds How often the service will check for expired timers.
The default is 120 seconds.

OwnershipTimeoutSeconds When the persistence service loads a workflow, it
will lock the workflow record for this length of time
(important when multiple runtimes share the same
persistence database). The default value is TimeSpan.
MaxValue.

UnloadOnIdle When true, the service will persist idle workflows. The
default is false.

Running with Persistence
To see the persistence service in action, let's use the following workflow definition:

<SequentialWorkflowActivity
 x:Class="WorkflowWithDelay"
 x:Name="WorkflowWithDelay"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow">

 <CodeActivity x:Name="codeActivity1"
 ExecuteCode="codeActivity_ExecuteCode" />
 <DelayActivity x:Name="delayActivity1"
 TimeoutDuration="00:00:10" />
 <CodeActivity x:Name="codeActivity2"
 ExecuteCode="codeActivity_ExecuteCode" />

</SequentialWorkflowActivity>

We have a Delay activity between two Code activities. The delay will idle the
workflow for 10 seconds. The ExecuteCode events of both Code activities reference
the same event handler in our code-behind class, listed overleaf. The event handler
will write a simple message to the console window.

Workflow Hosting

[144]

public partial class WorkflowWithDelay : SequentialWorkflowActivity
{
 private void codeActivity_ExecuteCode(object sender, EventArgs e)
 {
 CodeActivity activity = sender as CodeActivity;
 Console.WriteLine("Hello from {0}", activity.Name);
 }
}

Next, we'll put together a host to run the workflow. We'll subscribe to various events
and print messages to track the progress of our workflow.

public class Persist
{
 public static void Run()
 {
 using(WorkflowRuntime runtime =
 new WorkflowRuntime("WorkflowWithPersistence"))
 using (AutoResetEvent reset =
 new AutoResetEvent(false))
 {

 runtime.WorkflowCompleted += delegate { reset.Set(); };
 runtime.WorkflowTerminated += delegate { reset.Set(); };

 runtime.WorkflowPersisted +=
 new EventHandler<WorkflowEventArgs>(
 runtime_WorkflowPersisted);
 runtime.WorkflowLoaded +=
 new EventHandler<WorkflowEventArgs>(
 runtime_WorkflowLoaded);
 runtime.WorkflowUnloaded +=
 new EventHandler<WorkflowEventArgs>(
 runtime_WorkflowUnloaded);
 runtime.WorkflowIdled +=
 new EventHandler<WorkflowEventArgs>(
 runtime_WorkflowIdled);

 WorkflowInstance instance;
 instance = runtime.CreateWorkflow(typeof(WorkflowWithDelay));
 instance.Start();
 reset.WaitOne();
 }
 }

 static void runtime_WorkflowIdled(object sender,
 WorkflowEventArgs e)

Chapter 6

[145]

 {
 Console.WriteLine("Workflow {0} idled",
 e.WorkflowInstance.InstanceId);
 }

 static void runtime_WorkflowUnloaded(object sender,
 WorkflowEventArgs e)
 {
 Console.WriteLine("Workflow {0} unloaded",
 e.WorkflowInstance.InstanceId);
 }

 static void runtime_WorkflowLoaded(object sender,
 WorkflowEventArgs e)
 {
 Console.WriteLine("Workflow {0} loaded",
 e.WorkflowInstance.InstanceId);
 }

 static void runtime_WorkflowPersisted(object sender,
 WorkflowEventArgs e)
 {
 Console.WriteLine("Workflow {0} persisted",
 e.WorkflowInstance.InstanceId);
 }
}

Our host application creates a new runtime, passing the name of the configuration
section with the persistence configuration. The application subscribes to a number
of workflow events that will print simple messages to the console. When we run the
above code, we'll see the output as shown in the screenshot below:

The first Code activity runs and the prints a message to the screen. The Delay
then blocks the workflow. The runtime sees the workflow has no work to perform
and raises the WorkflowIdled event. The runtime also sees there is a persistence
service available, and the service has specified UnloadOnIdle. The runtime asks the
persistence service to save the state of the workflow, and then unloads the workflow

Workflow Hosting

[146]

instance. When the delay timer expires, the runtime uses the persistence service to
reload the workflow instance and resumes the workflow's execution.

When the SQL persistence service reloads the workflow, the service will set a flag in
the database to mark the instance as locked. If another persistence service in another
process or on another machine tries to load the locked workflow instance, the service
will raise an exception. The lock prevents this workflow instance from executing
twice in two different runtimes. The lock is released when the workflow persists
again, or when the lock timeout (specified by OwnershipTimeoutSeconds) expires.

When the workflow completes, the runtime again asks the persistence service to
persist the workflow. The SqlWorkflowPersistenceService inspects the state of
the workflow and sees the workflow is finished executing. The service will delete
the previously saved state record instead of saving state. Most of the database work
takes place in the InstanceState table of the persistence database.

In order for the persistence service to save the state of a workflow, it first has
to serialize the workflow. Let's take a look at serialization in WF to get a better
understanding of how persistence services will work.

Persistence and Serialization
There are two types of serialization in Windows Workflow. The runtime provides
the WorkflowMarkupSerializer class to transform workflows into XAML. There is
no need for the mark-up serializer to save the state, or data inside of a workflow. The
goal of the mark-up serializer is to produce a workflow definition in XML for design
tools and code generators.

Persistence services, on the other hand, use the GetDefaultSerializedForm method
of the WorkflowPersistenceService base class. This method calls the public
Save method of the Activity class, and the Save method uses a BinaryFormatter
object to serialize a workflow. The binary formatter produces a byte stream, and
the WorkflowPersistenceService runs the byte stream through a GZipStream for
compression. The goal of binary serialization is to produce a compact representation
of the workflow instance for long-term storage. There are two types of serialization in
Windows Workflow because each type achieves different goals.

It's not important to understand all of the gritty serialization details. What is
important to take away from the above paragraph is that the runtime uses the
BinaryFormatter class from the base class library when persisting workflows. We
need to keep this in mind if we write a workflow like the following:

Chapter 6

[147]

public partial class WorkflowWithDelay2 : SequentialWorkflowActivity
{
 Bug _bug = new Bug();
}

class Bug
{
 private Guid _id;
 public Guid BugID
 {
 get { return _id; }
 set { _id = value; }
 }	
}

Let's assume this workflow has a Delay activity inside, just as in our previous
example. This workflow also includes a private Bug object. Although we don't do
anything interesting with the Bug object, it will change our persistence behavior. If
we run the workflow without a persistence service, the workflow should complete
successfully. If we run the workflow with a persistence service, we'll see an exception
similar to Type Bug is not marked as serializable.

The BinaryFormatter will attempt to serialize every piece of state information
inside our workflow, including a custom object like our Bug object. When any object
formatter comes across an object it needs to serialize, it first looks to see if there
is a surrogate selector registered for the object's type. If no surrogate selector is
available, the formatter checks to see if the Type is marked with the Serializable
attribute. If neither of these conditions are met, the formatter will give up and throw
an exception. Since we own the Bug class, we can decorate the Bug class with a
Serializable attribute and avoid the exception.

[Serializable]
class Bug
{
 private Guid _id;
 public Guid BugID
 {
 get { return _id; }
 set { _id = value; }
 }
}

If some third party owns the Bug class, we can write a surrogate selector for
serialization, which is beyond the scope of this chapter (see the SurrogateSelector
class in the System.Runtime.Serialization namespace).

Workflow Hosting

[148]

If there is a field that we don't need to serialize and restore with the workflow
instance, we can tell the formatter to skip serialization with the NonSerialized
attribute. The Bug object in the code below won't exist in the persisted form of the
workflow. When the runtime reloads the workflow after a persistence point, the _bug
field will be left unassigned.

public partial class WorkflowWithDelay2 : SequentialWorkflowActivity
{
 [NonSerialized]
 Bug _bug = new Bug();
}

A persistence service stores the state of a workflow and allows us to have workflows
that survive machine restarts and run for months at a time. However, a persistence
service cannot tell us what happened during the execution of a workflow, or how far
along a workflow has progressed. Our next topic — tracking services, will give us
this information.

Tracking Services
Windows Workflow provides extensible and scalable tracking features to capture
and record information about workflow execution. A tracking service uses a tracking
profile to filter the information it receives about a workflow. The WF runtime can
send information about workflow events, activity state changes, rule evaluations,
and our own custom instrumentation data. The tracking service decides what it will
do with the data it receives. The service could write tracking data to a log file, or save
the data in a database. The tracking service can participate in transactions with the
workflow runtime to ensure the information it records is consistent and durable.

You might wonder how tracking information is different
from the trace information we saw earlier in the chapter.
Both features expose detailed information about important
events inside the workflow runtime. However, tracking
information is exposed through an API specialized for
Windows Workflow. We'll also see in this section how
tracking information can be saved to a database and later
queried through the API provided by WF.

Tracking information sounds like a useful feature for system administrators who
want to analyze resource usage, but there are also tremendous business scenarios
for tracking information. For example, a company could use recorded tracking
information to count the number of open invoices, or the average time for invoices to
close. By measuring the tracking information, a business could improve its processes.

Chapter 6

[149]

Tracking Classes
All tracking services derive from a TrackingService base class. This class defines
the API for working with tracking profiles and tracking channels. As we mentioned
earlier, a tracking profile defines and filters the type of information we want to
receive from the runtime. A tracking channel is a communications conduit between
the workflow runtime and the tracking service. The runtime will ask the service
to give it a tracking channel based on profile information. Once the runtime has
an open channel, it sends information to the service via the channel. If we write a
custom tracking service, we'll also need to provide channels for the service.

Windows Workflow provides one implementation of a tracking service with
the SqlTrackingService class. The SqlTrackingService writes the tracking
information it receives to a SQL Server database. The SqlTrackingService also
stores tracking profiles in the database.

Just as we needed a schema for the SQL persistence service, we'll need to install
the schema for the SQL tracking service. We can create the tracking schema in the
same database as the persistence schema. The scripts to create the tracking schema
are underneath the same directory as the persistence scripts (typically C:\WINDOWS\
Microsoft.NET\Framework\v3.0\Windows Workflow Foundation\SQL). The
scripts are Tracking_Schema.sql, and Tracking_Logic.sql. We must run the
schema file before the logic file. Using the command-line tool to run the scripts
would look as shown in the screenshot on the next page.

Workflow Hosting

[150]

Tracking Configuration
We can configure a tracking service into our runtime either programmatically or
with the application configuration file. The following configuration file will load the
SQL tracking service with default parameters:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <configSections>
 <section
 name="WorkflowWithTracking"
 type="System.Workflow.Runtime.Configuration.
 WorkflowRuntimeSection,
 System.Workflow.Runtime, Version=3.0.00000.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>
 </configSections>

 <WorkflowWithTracking>
 <CommonParameters>
 <add name="ConnectionString"
 value="Data Source=(local);Initial Catalog=WorkflowDB;
 Integrated Security=true"/>
 </CommonParameters>
 <Services>
 <add
 type="System.Workflow.Runtime.Tracking.SqlTrackingService,
 System.Workflow.Runtime, Version=3.0.00000.0,
 Culture=neutral,PublicKeyToken=31bf3856ad364e35"
 />
 </Services>
 </WorkflowWithTracking>
</configuration>

Chapter 6

[151]

The parameters we can pass to the service are listed in the table below:

Name Description
ConnectionString The connection string to the tracking database.
EnableRetries When true, the service will retry failed database

operations up to 20 times or until the operation
completes successfully. The default is false.

IsTransactional When true, the service will participate in transactions
with the workflow runtime and other services, like the
persistence service. The default is true.

PartitionOnCompletion For high uptime and scalability, the partitioning
feature periodically creates a new set of tables to store
information about completed workflow instances. The
default value is false.

ProfileChangeCheckInterval The service caches tracking profiles but will
periodically poll to see if there is a change. The default
poll interval is 1 minute.

UseDefaultProfile When true, the service will return a default tracking
profile if no profile is defined. The default is true.

Running with Tracking
With the tracking service added in the configuration file, there is nothing special we
need to do at run time. The code we use to run a workflow with tracking is the same
as it has always been.

static public void RunSimple()
{
 using (WorkflowRuntime runtime =
 new WorkflowRuntime("WorkflowWithTracking"))
 using (AutoResetEvent reset = new AutoResetEvent(false))
 {
 runtime.WorkflowCompleted += delegate { reset.Set(); };
 runtime.WorkflowTerminated += delegate { reset.Set(); };

 WorkflowInstance instance;
 instance = runtime.CreateWorkflow(typeof(SimpleWorkflow));
 instance.Start();
 reset.WaitOne();

 DumpTrackingEvents(instance.InstanceId);
 }
}

Workflow Hosting

[152]

When the program finishes we'll have a great deal of information recorded across
several tables in our SQL Server tracking database. We can use some handwritten
queries to examine the tracking information, or we can use one of many views the
tracking schema installs in the database. There is also a complete object model for us
to query tracking information programmatically. The classes we can use are shown
in the screenshot below:

The SqlTrackingWorkflowInstance class gives us access to tracking information
about a specific workflow instance. The ActivityEvents property of the class will
return a list of ActivityTrackingRecord objects. Likewise, the WorkflowEvents
property will return WorkflowTrackingRecord objects, and the UserEvents
property will return UserTrackingRecord objects (which are custom events we
can define). Notice the breadth of information includes time stamps, arguments,
and status codes. The class even includes a WorkflowDefinition property that will
return a XAML definition of the workflow. This feature can be useful for auditing
workflows that use dynamic updates or that we customize for each client.

The code on the next page makes use of these classes to retrieve a subset of the
tracking information. Given a connection string and a workflow instance ID, the
SqlTrackingQuery class can return a SqlTrackingWorkflowInstance object,
which gives us access to all the records. The connection string we can read from the
application configuration file, while the instance ID we will receive as a parameter.

Chapter 6

[153]

public static void DumpTrackingEvents(Guid instanceID)
{
 WorkflowRuntimeSection config;
 config = ConfigurationManager.GetSection("WorkflowWithTracking")
 as WorkflowRuntimeSection;

 SqlTrackingQuery query = new SqlTrackingQuery();
 query.ConnectionString =
 config.CommonParameters["ConnectionString"].Value;

 SqlTrackingWorkflowInstance trackingInstace;
 query.TryGetWorkflow(instanceID, out trackingInstace);
 if (trackingInstace != null)
 {
 Console.WriteLine("Tracking Information for {0}", instanceID);

 Console.WriteLine(" Workflow Events");
 foreach(WorkflowTrackingRecord r in trackingInstace.
WorkflowEvents)
 {

 Console.WriteLine(" Date: {0}, Status: {1}",
 r.EventDateTime, r.TrackingWorkflowEvent);
 }

 Console.WriteLine(" Activity Events");
 foreach (ActivityTrackingRecord r in trackingInstace.
ActivityEvents)
 {
 Console.WriteLine(" Activity: {0} Date: {1} Status: {2}",
 r.QualifiedName, r.EventDateTime, r.ExecutionStatus);

 }
 }
}

The output of this code is shown in the screenshot below:

Workflow Hosting

[154]

Running one simple workflow produced a vast amount of tracking information (we've
seen only a subset in this example). The SQL tracking service provided a default
tracking profile that took all the information the runtime produced. If we only want to
track specific pieces of information, we'll need a custom tracking profile.

Tracking Profiles
When the workflow runtime creates a new workflow instance, it will call
TryGetProfile on each running tracking service and pass the workflow instance
as a parameter. If a tracking profile has been configured for the workflow type, the
TryGetProfile method will return an output parameter of type TrackingProfile.
The runtime filters the tracking information it sends to the service using track points
defined in the profile. The classes involved in building a tracking profile are shown
in the screenshot below:

Let's say we don't want to track the individual activities inside a workflow. Instead,
we want to track just information about the workflow itself. We'll need to define
and create a new TrackingProfile object and populate the WorkflowTrackPoints
property. We will leave the ActivityTrackPoints and UserTrackPoints
properties empty.

TrackingProfile profile = new TrackingProfile();
profile.Version = new Version("1.0.0");
WorkflowTrackPoint workflowTrackPoint = new WorkflowTrackPoint();

Chapter 6

[155]

Array statuses = Enum.GetValues(typeof(TrackingWorkflowEvent));
foreach (TrackingWorkflowEvent status in statuses)
{
 workflowTrackPoint.MatchingLocation.Events.Add(status);
}
profile.WorkflowTrackPoints.Add(workflowTrackPoint);

string profileAsXml = SerializeProfile(profile);
UpdateTrackingProfile(profileAsXml);

A tracking profile needs a version. Tracking services will cache profiles to avoid re-
fetching them each time the runtime asks for the profile. If we update a profile, we
need to change the version in order for the tracking service to recognize the update.

The code above populates the WorkflowTrackPoints collection with the
workflow event types we want to record. By using Enum.GetValues on the
TrackingWorkflowEvent enumeration, we will get all possible events, which
includes Started, Completed, Persisted, and Terminated, among others.

Once we've populated the TrackingProfile object, we need to update the profile
in the tracking service. The first step in the update process is to serialize the profile
object to XML. The TrackingProfileSerializer will perform the serialization
for us.

 private static string SerializeProfile(TrackingProfile profile)

{
 TrackingProfileSerializer serializer;
 serializer = new TrackingProfileSerializer();

 StringWriter writer = new StringWriter(new StringBuilder());
 serializer.Serialize(writer, profile);

 return writer.ToString();
}

The SQL tracking service stores profiles as XML in the TrackingProfile
table (except for the default tracking profile, which the service keeps in the
DefaultTrackingProfile table). The best approach for updating and inserting into
this table is to use the UpdateTrackingProfile stored procedure. When we add a
new tracking profile, we must associate the profile with a workflow type. We will
associate the new profile with our SimpleWorkflow workflow.

private static void UpdateTrackingProfile(string profileAsXml)
{
 WorkflowRuntimeSection config;
 config = ConfigurationManager.GetSection("WorkflowWithTracking")
 as WorkflowRuntimeSection;

Workflow Hosting

[156]

 using (SqlConnection connection = new SqlConnection())
 {
 connection.ConnectionString =
 config.CommonParameters["ConnectionString"].Value;

 SqlCommand command = new SqlCommand();
 command.Connection = connection;
 command.CommandType = CommandType.StoredProcedure;
 command.CommandText = "dbo.UpdateTrackingProfile";

 command.Parameters.Add(
 new SqlParameter("@TypeFullName",
 typeof(SimpleWorkflow).ToString()));

 command.Parameters.Add(
 new SqlParameter("@AssemblyFullName",
 typeof(SimpleWorkflow).Assembly.FullName));

 command.Parameters.Add(
 new SqlParameter("@Version","1.0.1"));

 command.Parameters.Add(
 new SqlParameter("@TrackingProfileXml", profileAsXml));

 connection.Open();
 command.ExecuteNonQuery();

 }
}

There are four parameters to the UpdateTrackingProfile stored procedure. The
@TypeFullName parameter needs the full type name (including namespace) of the
workflow to associate with this profile. Likewise, the @AssemblyFullName parameter
will need the full name of the assembly containing the associated workflow's
definition. The @Version parameter should contain the version of the tracking
profile, and the @TrackingProfileXml should contain the XML representation of a
TrackingProfile object.

With the tracking profile in the database, we will record different information when
we run our simple workflow. Other workflows will continue to use the default
tracking profile which records every event. Rerunning our program shows the
output in the screenshot on the next page. We are still recording workflow tracking
events, but the profile we've defined doesn't record any activity events.

Chapter 6

[157]

Data Maintenance
The SQL Tracking service provides a partitioning feature to move tracking
information out of the primary set of tracking tables and into a set of partitioned
tracking tables. This feature helps to manage the growth of tracking tables.
Administrators can move and archive old tracking information, and the table used
for the current partition will never grow excessively large.

When a partitioning takes place, a new set of partition tables will be created for each
elapsed partition interval. The SetPartitionInterval stored procedure configures
the partitioning interval. The default interval is monthly, but other valid values
include daily, weekly, and yearly. The tables will contain the partition date as part of
the table name.

There are two approaches to partitioning. Automatic partitioning is configured by
setting the PartitionOnCompletion parameter of the SQL tracking service to true.
Automatic partitioning will move tracking information into a partition as soon as
a workflow completes. Automatic partitioning is good for applications that don't
have any down time, but will add some overhead as completed workflow records
constantly shuffle into partitions.

We can also use manual partitioning by running the
PartitionCompletedWorkflowInstances stored procedure. The stored procedure
will move tracking records for completed workflows into partitioned tables. For
applications with some down time we could schedule this stored procedure to run
during non-peak hours.

Persistence and Tracking Together
The SQL persistence and SQL tracking services work to provide durable storage
for workflow state and workflow tracking information respectively. However, they
don't quite work together. Specifically, each service will operate using different
connections to the database. A workflow runtime with both services present will
use more connections then necessary. Additional overhead will arise if the tracking

Workflow Hosting

[158]

service is transactional. When transactions span multiple connections, the Microsoft
Distributed Transaction Coordinator (MSDTC) becomes involved and manages the
transaction. MSDTC carries some overheard.

WF provides an optimization for applications using both the SQL persistence and SQL
tracking services with the SharedConnectionWorkflowCommitWorkBatchService
class. The service allows the two SQL services to share a connection if the connection
string for both is the same.

Shared Connection Configuration
The configuration file below configures both SQL workflow services and the
shared connection service. Since we define the connection string parameter in the
CommonParameters section, all the services will use the same connection string.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <configSections>
 <section
 name="WorkflowConfiguration"
 type="System.Workflow.Runtime.Configuration.
 WorkflowRuntimeSection,
 System.Workflow.Runtime, Version=3.0.00000.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>
 </configSections>

 <WorkflowConfiguration>
 <CommonParameters>
 <add name="ConnectionString"
 value="Data Source=(local);Initial Catalog=WorkflowDB;
 Integrated Security=true"/>
 </CommonParameters>
 <Services>
 <add
 type="System.Workflow.Runtime.Tracking.
 SqlTrackingService,
 System.Workflow.Runtime, Version=3.0.00000.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>
 <add
 type="System.Workflow.Runtime.Hosting.
 SqlWorkflowPersistenceService,
 System.Workflow.Runtime, Version=3.0.00000.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"
 UnloadOnIdle="true" />

Chapter 6

[159]

 <add
 type= "System.Workflow.Runtime.Hosting.
 SharedConnectionWorkflowCommitWorkBatchService,
 System.Workflow.Runtime, Version=3.0.00000.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35" />
 </Services>
 </WorkflowConfiguration>
</configuration>

We don't need to change our application, as the shared connection service will
coordinate behind the scenes with the other runtime services.

Summary
This chapter reviewed the capabilities of the Windows Workflow runtime. We
examined how to monitor the workflow runtime by subscribing to runtime events
and configuring tracing information. We also examined how to customize the
runtime by adding services. These services include scheduling services (to manage
threads), persistence services (to manage state), and tracking services (to record
tracking information). If the built-in services do not fulfil our requirements, we can
replace any of them with custom versions we write ourselves. This architecture gives
the Windows Workflow runtime its flexibility and extensibility.

Event-Driven Workflows
There is one important decision to make when creating a new workflow. Will
the workflow be a sequential workflow, or a state machine workflow? Windows
Workflow provides these two workflow execution types out of the box. To answer
the question, we have to decide who is in control.

A sequential workflow is a predictable workflow. The execution path might branch,
or loop, or wait for an outside event to occur, but in the end, the sequential workflow
will use the activities, conditions, and rules we've provided to march inevitably
forward. The workflow is in control of the process.

A state machine workflow is an event-driven workflow. That is, the state machine
workflow relies on external events to drive the workflow to completion. We define
the legal states of the workflow, and the legal transitions between those states. The
workflow is always in one of the states, and has to wait for an event to arrive before
transitioning to a new state. Generally, the important decisions happen outside the
workflow. The state machine defines a structure to follow, but control belongs to the
outside world.

We use a sequential workflow when we can encode most of the decision-making
inside the workflow itself. We use a state machine workflow when the decision-
making happens outside the workflow. In this chapter, we will take a closer look at
how state machines operate.

What Is a State Machine?
State machines have been around in computer science for a long time. You'll find
they are especially popular in reactive systems, like the software for video games
and robotics. Designers use state machines to model a system using states, events,
and transitions.

Event-Driven Workflows

[162]

A state represents a situation or circumstance. In the screenshot below, we have a
state machine with two states: a Power On state and a Power Off state. The machine
will always be in one of these two states.

An event is some outside stimulus. In the screenshot above, we only have one type of
event, a button‑click event. The state machine will respond to this event in either the
Power On or the Power Off state. Not all states have to respond to the same events.

A transition moves the state machine to the next state. A transition can only occur
in response to an event. Transitions don't have to move the state machine to a new
state—a transition could loop back to the same state. When the machine receives
a button‑click event in the Power Off state, it transitions to the Power On state.
Conversely, if the machine is in the Power On state and receives a button‑click event,
it moves to the Power Off state.

Implied in the concept of a state transition is that some action will take place before
or after the transition. That is, a state machine doesn't merely store state, it also
executes code when events arrive. In the figure above, the state machine would be
controlling the flow of electricity by opening or closing a circuit when it arrives
in a new state.

State Machines in Windows Workflow
The state machine in the screenshot above is quite simple, and most systems will
require a more sophisticated model. However, the concepts introduced in the
screenshot (states, events, and transitions) are the same concepts we use to build
state machine workflows in Windows Workflow.

In WF, the State activity represents a state in a state machine workflow. As events
arrive, the workflow will transition between State activities. A state machine
workflow must specify an initial state, which will be the starting state for the
workflow. A state machine workflow can optionally specify a completed state. The
workflow will conclude after it transitions to the completed state.

Chapter 7

[163]

An EventDriven activity represents an event in a state machine. We place these
activities inside State activities to represent the legal events for the state. Inside an
EventDriven activity, we can place a sequence of activities that will execute when
the event arrives. The last activity in the sequence is commonly a SetState activity.
A SetState activity specifies a transition to the next state.

Our First State Machine
As detailed in Chapter 2, we can author workflows using code only, XAML only, or
a combination of code and XAML (code-separation). State machine workflows are no
different in this respect. We will build the workflows in this chapter using the code-
separation approach, although any of the authoring modes would work.

Our workflow will support a bug-tracking application. Specifically, we will be
tracking the life cycle of a software bug as the bug moves from an Open state to a
Closed state. During its lifetime, a bug might also be in the Assigned, Resolved, and
Deferred states.

Why use a state machine to model the workflow of bug fixes? Because is it
impossible to model the choices a bug will need to reach a completed state. Think
about the decision-making required at each step in a bug's life. A newly opened bug
requires some evaluation. Is the bug a duplicate? Is the bug really a bug? Even if the
bug really is a defect, not all defects move directly to someone's work queue. We
must weigh the bug's severity against the project schedule and available resources to
fix the bug. Since we can't put all of the intelligence we need into the workflow, we'll
rely on external events to tell the workflow what decisions we've made.

Creating the Project
Our adventure starts, as most adventures do, with the New Project dialog box of
Visual Studio (File | New Project). As shown in the screenshot overleaf, we will use
the State Machine Workflow Console Mode application. The project template
will set up a project with all the assembly references we need to program with
Windows Workflow.

Event-Driven Workflows

[164]

The new project will include a default workflow in a file named Workflow1.cs.
We can delete this file and add our own State Machine Workflow (with code
separation), named BugWorkflow.xoml (see the screenshot below).

Chapter 7

[165]

The workflow designer will appear with our new state machine workflow
(see the screenshot below). At this point, the Toolbox window will be available
and populated with activities from the base activity library. Initially, however,
we can only use a subset of activity types—the activity types listed inside the
BugFlowInitalState shape in the screenshot below:

Before we can begin to design our state machine, we are going to need some
supporting code. Specifically, we need a service that will provide the events to drive
the workflow.

Life of a Bug
State machines will spend most of their time waiting for events to arrive from a
local communication service. We know from our discussion of local communication
services in Chapter 3 that we will need an interface that defines a service contract.
The interface will define events that the service can raise to provide data to the
workflow, and methods the workflow can invoke on the service. For this example,
our communication is unidirectional — all we define is events.

[ExternalDataExchange]
public interface IBugService
{
 event EventHandler<BugStateChangedEventArgs> BugOpened;
 event EventHandler<BugStateChangedEventArgs> BugResolved;
 event EventHandler<BugStateChangedEventArgs> BugClosed;
 event EventHandler<BugStateChangedEventArgs> BugDeferred;
 event EventHandler<BugStateChangedEventArgs> BugAssigned;
}

The event arguments for these events will require the service to pass along
information the workflow can use during processing. For example, one useful piece

Event-Driven Workflows

[166]

of information will be a Bug object that carries all the attributes (title, description,
assignment) of a bug.

[Serializable]
public class BugStateChangedEventArgs : ExternalDataEventArgs
{
 public BugStateChangedEventArgs(Guid instanceID, Bug bug)
 : base(instanceID)
 {
 _bug = bug;
 WaitForIdle = true;
 }

 private Bug _bug;
 public Bug Bug
 {
 get { return _bug; }
 set { _bug = value; }
 }

}

The service that implements the IBugService interface will raise events when the
status of a bug changes. For instance, the service might fire the event from a smart
client application in response to a user manipulating the bug in the UI. Alternatively,
the service might fire the event from an ASP.NET web service upon receiving
updated bug information in a web service call. The point is that the workflow doesn't
care why the event fires, and doesn't care about the decisions leading up to the event.
The workflow only cares that the event happens.

We will use a naive implementation of the bug service interface and provide
simple methods that raise events. Later in the chapter, we will use this service in a
console-mode program to raise events to the workflow.

public class BugService : IBugService
{
 public event
 EventHandler<BugStateChangedEventArgs> BugOpened;

 public void OpenBug(Guid id, Bug bug)
 {
 if (BugOpened != null)
 {
 BugOpened(null,
 new BugStateChangedEventArgs(id, bug));
 }
 }

Chapter 7

[167]

 // and so on ...

}

Now that we know about the service contract our workflow will use, we can
continue building our state machine.

The State Activity
The State activity represents a state in the state machine workflow. Not
surprisingly, state activities are the backbone of event-driven workflows. We can
generally start a workflow design by dropping all the State activities we need from
the Toolbox window into the designer. If we drop a State activity for each possible
state of a software bug, we'll have a designer view like that below:

Notice two of the shapes in the screenshot above use special icons in their upper left
corner. The BugFlowInitialState shape has a green icon in the upper left because
it is the initial state for the workflow. Every state machine workflow must have an
initial state, which the workflow will enter on start up. We can change the initial
state by right-clicking another shape and selecting Set As Initial State from the
context menu.

The BugClosedState has a red icon in the upper left because this is the completed
state. A workflow is finished upon entering the completed state, but a completed
state is optional. In many bug-tracking systems, a bug can be re-opened from a
closed state, but in our workflow we will make the closed state a completed state. We

Event-Driven Workflows

[168]

can set the completed state by right‑clicking a shape and selecting Set As Completed
State from the context menu.

Our next step is to define the events the state machine will process in each state. We
will define these events using an EventDriven activity.

The EventDriven Activity
The EventDriven activity is one of the few activities we can drag from the
Toolbox and drop inside a State activity. In the screenshot below, we've dropped
an EventDriven activity inside of BugFlowInitialState. We've also used the
Properties window to change the EventDriven activity's name to OnBugOpened.

OnBugOpened represents how the state machine will react to a BugOpened event in its
initial state. We cannot do much with the activity at this level of detail. We need to
drill into the activity by double-clicking OnBugOpened. This brings us to the details
view of the activity shown in the screenshot below:

Chapter 7

[169]

This detail view shows a breadcrumb navigation control along the top of the
designer. The purpose of the breadcrumb is to let us know we are editing the
BugFlowInitalState activity inside the BugFlow workflow. In the center of this
view is a detailed view of the OnBugOpened EventDriven activity we dropped
inside the state.

Inside the detailed view, we can see the EventDriven activity is like a sequence
activity and can hold additional child activities. There are a few restrictions,
however. ������������������������� The first activity in an EventDriven activity must implement the
IEventActivity interface. Three activities from the base activity library meet
this condition—the Delay activity, the HandleExternalEvent activity, and the
WebServiceInput activity. All of our events will come from a local communication
service, so we will use a HandleExternalEvent activity.

The screenshot below shows a HandleExternalEvent activity inside the
OnBugOpened activity. We've changed the activity's name to handleBugOpenedEvent
and set InterfaceType ����������������� to reference the IBugService interface we defined earlier.
Finally, we selected BugOpened as the name of the event to handle. We've done all
the setup work we need to handle an event in our initial workflow state.

At this point, we could continue to add activities after the event handler. For
example, we could add an activity to send notifications to team members about the
new bug. When we are done adding these processing activities then the last activity
we want to execute will be a SetState activity, which we cover next.

The SetState Activity
Incoming events force state machines to transition into new states. We can model
transitions using the SetState activity, which can only appear inside state machine
workflows. The SetState activity is relatively simple. The activity includes a
TargetStateName property that points to the destination state.

Event-Driven Workflows

[170]

In the following screenshot, we've added a SetState activity to OnBugOpened
and set the TargetStateName property to BugOpenState. The property editor for
TargetStateName will include only valid state names in a drop‑down list for selection.

We can now click on the BugFlow link in the breadcrumb and return to view our
state machine workflow. The designer will recognize the SetState activity we
just configured and draw a line from the BugFlowInitialState shape to the
BugOpenState (see screenshot below). The workflow designer gives us a clear
picture that the workflow of a bug starts in BugFlowInitialState, and moves to
the BugOpenState when an incoming BugOpened event signals the official birth of a
new bug.

At this point, we can continue to add EventDriven activities to our workflow.
We need to cover all the possible events and transitions in the life of a bug. One
advantage of a state machine is that we control which events are legal in specific
states. For example, we never want any state other than the initial state to handle
a BugOpened event. We could also design our state machine so that a bug in the
deferred state will only process a BugAssigned event. The following screenshot
shows our state machine with all the events and transitions in place.

Chapter 7

[171]

Notice in the screenshot above how the BugClosedState does not process any
events. This state is the completed state, and the workflow will not process any
additional events.

The StateInitialization and StateFinalization
Activities
Two additional activities we can drop inside a State activity are the
StateInitialization activity and the StateFinalization activity. A
State activity can have only one StateInitialization activity and one
StateFinalization activity.

Both of these activities will execute a set of child activities in sequence. The
StateInitialization activity runs when the state machines transitions into the
state containing the initialization activity. Conversely, the StateFinalization
activity will execute whenever the state machine transitions out of the state
containing the finalization activity. Using these two activities, we can perform
pre- and post-processing inside the states of our state machines.

Driving the State Machine
Starting a state machine workflow is no different from starting any other workflow.
We first create an instance of the WorkflowRuntime class. We will need the
runtime to host an ExternalDataExchangeService, which in turn hosts our local

Event-Driven Workflows

[172]

communication service that implements the IBugService interface. Chapter 3
covered local communication services and the ExternalDataExchangeService in
more detail.

ExternalDataExchangeService dataExchange;
dataExchange = new ExternalDataExchangeService();
workflowRuntime.AddService(dataExchange);

BugService bugService = new BugService();
dataExchange.AddService(bugService);

WorkflowInstance instance;
instance = workflowRuntime.CreateWorkflow(
 typeof(BugFlow));
instance.Start();

The next bit of code in our program will invoke methods on our bug service. These
methods raise events that the workflow runtime will catch. We've carefully arranged
the events to move through all the states in the workflow and finish successfully.

Bug bug = new Bug();
bug.Title = "Application crash while printing";

bugService.OpenBug(instance.InstanceId, bug);
bugService.DeferBug(instance.InstanceId, bug);
bugService.AssignBug(instance.InstanceId, bug);
bugService.ResolveBug(instance.InstanceId, bug);
bugService.CloseBug(instance.InstanceId, bug);

waitHandle.WaitOne();

One of the advantages to using a state machine is that the workflow runtime will
raise an exception if our application fires an event that the current workflow state
doesn't expect. We should only fire the BugOpened event when the state machine is in
its initial state, and we should only fire the BugResolved event when the workflow
is in an assigned state. The workflow runtime will ensure our application follows the
process described by the state machine. �� This provides an advantage in that it ensures
an improperly coded application won't be able to cause state transitions that the
workflow does not regard as applicable, so the workflow-encoded business process
will always be followed. However, it's important to note that any code that fires
inapplicable events won't cause compile-time errors—we won't see the errors
until run time.

In a real bug-tracking application, it may take weeks or more for a bug to reach a
closed state. Fortunately, state machine workflows can take advantage of workflow
services, like tracking and persistence (both described in Chapter 6). A persistence
service could save the state of our workflow and unload the instance from memory,
then reload the instance when an event arrives weeks later.

Chapter 7

[173]

There is something else unusual about our example. Our application knows the
state of the workflow as it fires each event. A real application might not have this
intimate knowledge of the workflow. Our application might not remember the state
of a two-month-old bug, in which case it won't know the legal events to fire, either.
Fortunately, Windows Workflow makes this information available.

Inspecting State Machines
Think about the user interface that we want to provide for our bug-tracking service.
We wouldn't want to give the user the option to create exceptions. For instance, we
wouldn't want to offer a Close This Bug button when the bug is in a state that will
not transition to the closed state. Instead, we want the user interface to reflect the
current state of the bug and only allow the user to perform legal actions. We can do
this with the help of the StateMachineWorkflowInstance class.

StateMachineWorkflowInstance
The StateMachineWorkflowInstance class provides an API for us to manage and
query a state machine workflow. As shown in the class diagram in the screenshot
below, this API includes properties we can use to fetch the current state name and
find the legal transitions for the state. The class also includes a method to set the state
of the state machine. Although we generally want the bug to follow the workflow
we've designed in our state machine, we could use the SetState method from an
Administrator's override screen to put the bug back into its initial state, or to force
the bug into a closed state (or any state in-between).

Event-Driven Workflows

[174]

Let's modify our original example to call the following method. We will call this
DumpWorkflow method just after calling the bug service's AssignBug method, so the
workflow should be in the Assigned state.

private static void DumpStateMachine(
 WorkflowRuntime runtime,
 Guid instanceID)
{
 StateMachineWorkflowInstance instance =
 new StateMachineWorkflowInstance(
 runtime, instanceID);

 Console.WriteLine("Workflow ID: {0}", instanceID);
 Console.WriteLine("Current State: {0}",
 instance.CurrentStateName);
 Console.WriteLine("Possible Transitions: {0}",
 instance.PossibleStateTransitions.Count);
 foreach (string name in instance.PossibleStateTransitions)
 {
 Console.WriteLine("\t{0}", name);
 }
}

This code first retrieves a workflow instance object using the workflow runtime and
a workflow ID. We then print out the name of the current state of the workflow, the
number of legal transitions, and the names of the legal transitions. The output will
look as shown below:

We can use the information above to customize the user interface. If the user
were to open this particular bug in an application ������������������������������� while the state of the bug was
BugAssignedState, we'd provide buttons to mark the bug as resolved, or defer the
bug. These are the only legal transitions from the current state.

Another interesting property on the StateMachineWorkflowInstance class is the
StateHistory property. As you might imagine, this property can give us a list of all
the states the workflow has seen. If you remember our discussion of tracking services
from Chapter 6, you might remember the tracking service does a thorough job of
recording the execution history of a workflow. If you guessed that the StateHistory
property would use the built-in tracking service of WF, you guessed right!

Chapter 7

[175]

State Machine Tracking
Chapter 6 provides all the details we needed to configure, initialize, and
consume tracking and trace information, so we won't recover the same
ground here. In order to make use of the StateHistory property, we have to
configure the workflow runtime to use a tracking service. If we try to use the
StateHistory property without a tracking service in place, we'll only create an
InvalidOperationException.

StateHistory and the Tracking Service
As of this writing, the StateHistory property doesn't
work if we configure the tracking service declaratively
in app.config or web.config. Instead, we have to
programmatically configure the tracking service with
a connection string and pass the service to the
workflow runtime:

SqlTrackingService trackingService;
trackingService = new SqlTrackingService(
 ConfigurationManager.
 ConnectionStrings["WorkflowDB"].
 ConnectionString);
trackingService.UseDefaultProfile = true;

workflowRuntime.AddService(trackingService);

If we want to list the states that our bug has passed through, ����������������� we could use the
classes we covered in Chapter 6, such as the SqlTrackingQuery. We can also use the
StateMachineWorkflowInstance class and the StateHistory property to do all the
work for us. Let's call the following method just before closing our bug:

private static void DumpHistory(
 WorkflowRuntime runtime,
 Guid instanceID)
{
 StateMachineWorkflowInstance instance =
 new StateMachineWorkflowInstance(
 runtime, instanceID);

 Console.WriteLine("State History:");
 foreach (string name in instance.StateHistory)
 {
 Console.WriteLine("\t{0}", name);
 }
}

Event-Driven Workflows

[176]

This code gives us the output as shown below: a list of the states the workflow has
seen, starting with the most recently visited state.

We can only use the StateMachineWorkflowInstance
class while the workflow instance is still running. Once the
workflow instace completes, we have to fall back to the
tracking service and use tracking service queries to read the
history of a state machine.

Hierarchical State Machines
Our first state machine was relatively simple, but it did represent the basic design
for conventional state machines. Sometimes, however, this straightforward approach
can be difficult to manage. Imagine if the workflow for our bug-tracking software
required us to allow a user to close or assign a bug — regardless of the current state
of the bug. We'd have to add event-driven activities for the assigned and closed
events to every state in the workflow (except the completed state). This might be fine
when we only have a handful of states, but can become tedious and error prone as
the state machine grows.

Fortunately, there is an easier solution. A hierarchical state machine allows us to
nest child states inside parent states. The child states essentially inherit the events
driven activities of their parent. If every state in our bug tracking workflow needs
to handle the bug-closed event with the same behavior, we only need to add one
event-driven activity to a parent state, and add our bug states as children of
this parent.

As it turns out, the state machine workflow itself is an instance of the
StateMachineWorkflowActivity class, which derives from the StateActivity
class (see the screenshot on the next page).

Chapter 7

[177]

Given this bit of information, all we need to do is add event-driven activities for
common events into our workflow, instead of inside each state. In the screenshot
below, we've removed the event-driven activities for the bug assigned and
bug-closed events from the individual states, and dropped them into the
parent workflow.

You'll notice this step has reduced the complexity of our state machine a bit. In fact,
the BugDefferedState and BugResolvedState activities have no event-driven
activities inside them at all. Instead, they'll inherit the behavior of the parent and
process only the OnBugAssigned and OnBugDeferred events. All the other states will

Event-Driven Workflows

[178]

inherit these event-driven activities, too. Hierarchical state machines are a good
fit for business exceptions, like when a customer cancels an order. If the customer
cancels, we have to stop the workflow no matter the current state.

With hierarchical state machines, it is important to realize
that a SetState activity can only target a leaf state—that
is a state with no child states.

Summary
In this chapter we've looked at state machines in Windows Workflow. State
machines consist of states, events, and transitions. Windows Workflow provides
all the activities we need to model these constituent pieces. State machines will
typically be driven by a local communication service or web service requests, and
the workflow runtime services, like tracking and persistence, work alongside state
machines the same way they work with sequential workflows. Finally, hierarchical
state machines enable us to extract common event-driven activities and place them
into a parent state.

Communication in Workflows
Not many workflows will live in isolation. Most workflows will need to
communicate with either local or remote services to finish their job. In earlier
chapters, we've looked at some of the basic building blocks for communication in
Windows Workflow. These blocks include activities like the HandleExternalEvent
and WebServiceInput activities.

In this chapter, we drill into more details about communication in Windows
Workflow. We'll see how a host process can communicate with specific activities
inside a workflow, and also examine the underlying queuing mechanism that
makes communication work. Finally, we look at remote communications using web
services. By the end of this chapter, we'll have the knowledge required to build a
well-connected application.

Local Communication Services Redux
We know that local communication services allow workflows to exchange data with
their host process. In Chapter 3, we defined a service that raised a BugAdded event
to a running workflow, which in turn invoked an AssignBug method on the service.
The service sent data to the workflow via the event, and the workflow sent data to
the service by invoking a method.

Communication in Workflows

[180]

The screenshot above shows how the workflow runtime acts as a broker between the
local communication service and a workflow instance. The runtime intercepts events
from the local service and directs the events to the proper workflow instance. This
interception is necessary because the workflow instance waiting for the event might
have been unloaded from memory and persisted to a database table. The runtime
can ask the persistence service to reload the workflow before it delivers an event,
but it needs a workflow instance ID first. Even if the workflow is still in memory, the
runtime will need an instance ID to locate the proper workflow. The runtime uses the
instance ID required by the ExternalDataEventArgs object passed during the event.

In many ways, we can think of the instance ID as being like a street address on a
package waiting for delivery. Given a street address, we can deliver the package to
the correct building. If only one person lives at the address, we can be reasonably
sure we've delivered the package to the intended recipient. But what if the street
address leads us to an office building? We don't have enough information to
correlate the package with its intended recipient.

Our simple example from Chapter 3 only has a single activity waiting for an event.
The runtime doesn't require any additional information to deliver the payload.
Not all workflows can be this simplistic. We'll need to learn how to correlate our
messages��� in case there are multiple activities waiting for an event��.

Correlation Parameters
Windows Workflow uses correlation tokens to establish conversations between
specific activities inside a workflow and local communication services inside the
host. Communication interfaces are uncorrelated by default; and we only need to
establish these correlation tokens when a workflow has multiple activities waiting�
concurrently ��� for incoming events. Let's look at an example:

Chapter 8

[181]

Imagine we are developing a workflow for our bug-tracking application that will ask
team members to vote on an incoming bug. A yes vote means the team member is
willing to accept the bug into the system. A no vote means the team member wants
to close the bug. We might design the interface and event argument class like the
following:

[ExternalDataExchange]
public interface IBugVotingService
{
 void RequestVote(string userName);
 event EventHandler<VoteCompletedEventArgs> VoteCompleted;
}

[Serializable]
public class VoteCompletedEventArgs : ExternalDataEventArgs
{
 public VoteCompletedEventArgs(
 Guid instanceId,
 string userName,
 bool isYesVote)
 : base(instanceId)
 {
 _userName = userName;
 _isYesVote = isYesVote;
 }

 private string _userName;
 public string UserName
 {
 get { return _userName; }
 set { _userName = value; }
 }

 private bool _isYesVote;
 public bool IsYesVote
 {
 get { return _isYesVote; }
 set { _isYesVote = value; }
 }
}

The workflow will invoke the RequestVote external method and pass a username
as a parameter. It will be the service's responsibility to notify the user and wait to
collect the user's vote. The service can then package the vote result into an event
argument object and raise the VoteCompleted event. The workflow will receive the
event, inspect the event arguments, and decide what to do next.

Communication in Workflows

[182]

Now imagine a workflow like the one in screenshot below:

When we designed our service interface, we assumed a workflow would only go
looking for a single vote. The workflow in the screenshot above is looking for two
votes in parallel. The workflow will call the service asking for a vote from the team's
technical lead. The workflow will also call the service asking for a vote from the
team's analyst. It will then wait for both events to arrive before it completes the
parallel activity.

Remember the ParallelActivity, which we covered in
Chapter 4, doesn't offer true parallel processing. The runtime
only allows one thread to execute inside a workflow instance
at a time. The parallel activity here will use that one thread to
execute both branches in no deterministic order, until they block
and wait for an event. Since it is unlikely that one of voting team
members will respond with a vote in milliseconds, both branches
of the parallel activity will reach a state where they are blocked
and waiting for their respective events to arrive.

Suppose the team's technical lead is the first to respond with a vote. The service will
raise an event, which the workflow runtime will intercept. The runtime will then
find our workflow instance and deliver the event. The question is—will the runtime
deliver the technical lead's vote to the HandleExternalEvent activity waiting in the
left branch, or the right branch? We can't be certain. The tech lead's vote might end
up in the right side, which we designed to process the analyst's vote. This scenario
presents a problem we have to solve by giving the runtime more information.

Chapter 8

[183]

Correlation Attributes
When the workflow calls out to the RequestVote method, it includes a significant
piece of information—the username parameter. If we ask for a vote from scott, we
should get Scott's vote back in the following activity. The username parameter can
tie the activities together—we just need to inform the workflow of the parameter's
significance. The following code is a revised version of our service's interface, along
with the event argument class:

[ExternalDataExchange]
[CorrelationParameter("userName")]

public interface IBugVotingService
{
 [CorrelationAlias("userName", "e.UserName")]

 event EventHandler<VoteCompletedEventArgs> VoteCompleted;

 [CorrelationInitializer]

 void RequestVote(string userName);
}

[Serializable]
public class VoteCompletedEventArgs : ExternalDataEventArgs
{
 public VoteCompletedEventArgs(
 Guid instanceId,
 string userName,
 bool isYesVote)
 : base(instanceId)
 {
 _userName = userName;
 _isYesVote = isYesVote;
 }

 private string _userName;
 public string UserName
 {
 get { return _userName; }
 set { _userName = value; }
 }

 private bool _isYesVote;
 public bool IsYesVote
 {
 get { return _isYesVote; }
 set { _isYesVote = value; }
 }
}

Communication in Workflows

[184]

We have three new attributes on our service interface. These attributes contain
correlation metadata that the runtime can use to set up a conversation between our
service and individual activities inside a workflow.

Correlation Parameter
We've added a CorrelationParameter attribute to our interface. The attribute
specifies the name of a parameter that the runtime will use to map an event to a
specific HandleExternalEvent activity. We specified userName as our correlation
parameter. The runtime will look for a parameter with the name of userName on all
methods and events in the communication service interface. When it finds such a
parameter it will use the parameter for correlation.

The CorrelationParameter attribute can appear multiple times on an interface
if there are multiple correlation parameters. We can only use this attribute on
interface types.

Correlation Initializer
We've decorated the RequestVote method with a CorrelationInitializer
attribute. The workflow runtime will recognize a call to RequestVote as the start of
a conversation between the workflow and the communication service. The runtime
will also recognize the username parameter as the correlation parameter, and save
the value. Later, when events arrive for the workflow, the runtime will compare
incoming correlation parameters against the saved values.

The obvious question is—how does the workflow know what the correlation
parameter is for an event? There is no username parameter—we've encapsulated the
username inside the event arguments. This is where the third attribute steps in—the
CorrelationAlias attribute.

Correlation Alias
We can apply CorrelationAlias attributes to methods and events in our service
interface to override the CorrelationParameter attribute on individual members.
We've placed this attribute on the VoteCompleted event. The attribute tells the
runtime to fetch the username correlation parameter from the UserName property of
the e parameter.

We've set up all the metadata we need in our service interface. The workflow
runtime will have enough information to correlate a CallExternalMethod activity
passing a username of scott with a HandleExternalEvent activity waiting on the
vote result for scott. Our next step is to utilize the correlation metadata inside
our workflow.

Chapter 8

[185]

Correlation Tokens
When we drop a CallExternalMethod activity into the workflow designer, we have
to configure, at a minimum, the InterfaceType and MethodName properties. These
properties tell WF the service and service method we want the activity to invoke. If
the interface we configure has a CorrelationParameter attribute, the designer will
add a new property to the Properties window—a CorrelationToken property (see
screenshot below).

Windows Workflow uses correlation tokens to link activities in a conversation. We
need to give the token a name and an owner. The token name is arbitrary, but since it
does identify the token, we should choose a meaningful name. The owner must be an
ancestor of the current activity. In the screenshot above, we've named the correlation
token TechLead and assigned its parent, the parallel activity branch, as the owner of
the token.

The HandleExternalEvent activity is next in this branch, and this activity should
handle the tech lead's vote. Once we've assigned the InterfaceType and EventName
properties in this activity, we'll again see a CorrelationToken property appear. We
will want to select TechLead in the token's drop‑down list.

Communication in Workflows

[186]

We've linked the CallExternalMethod activity and HandleExternalEvent activity
in the left branch with a correlation token. We can also create a new token for the
pair of activities in the right branch. The workflow runtime will use these tokens
and the username parameter to make sure it delivers the votes to the proper
event handler.

While correlation tokens are useful for linking activities, we shouldn't depend upon
them as a security feature. Just because a vote says it is from the technical lead
doesn't mean the message is really from the technical lead. In the next section, we
will learn how to use another property of the HandleExternalEvent activity—the
Roles property.

Role‑Based Authorization
Protecting computer resources is a two-step process. The first step is authentication.
Authentication verifies a user's identity. Authentication might be as simple as
asking a person for their username and password, or might be more involved and
utilize biometric information, like a fingerprint or retina scan. Windows Workflow
doesn't authenticate users, but when authentication is required the runtime will
rely on authentication mechanisms in the software around it. For instance, a
workflow hosted inside of an ASP.NET application might need Integrated Windows
authentication enabled, or might rely on the ASP.NET membership provider to
authenticate users.

Once a user's identity is established, we can determine what actions we will
allow the user to perform. This is step two—authorization. Authorization rules
often sound like only managers can approve an expense account or only
administrators can cancel the operation. Notice that these rules refer to groups of

Chapter 8

[187]

users like ��� managers��� and administrators. This is because we typically assign roles
to our users and authorize their requests based on their roles (hence the term—
role‑based authorization).

In the software world, role management software comes in a variety of ������������� flavors������ . For
software inside a Windows domain, we might derive a user's roles from their Active
Directory group membership. In a public-facing ASP.NET web application, we might
derive a user's roles from the ASP.NET Role Provider.

To support the different role implementations, Windows Workflow provides an
extensible role management scheme. WF provides an abstract base class named
WorkflowRole. The built-in implementations of this class provide role management
for Windows Active Directory and ASP.NET 2.0 Role Providers:

Roles and Activities
The two WF activities providing support for role-based authorization are the
HandleExternalEvent activity and the WebServiceInput activity. Both expose a
Roles property that is of type WorkflowRoleCollection. ����������������������� If we want to use role-
based authorization to secure these activities, we'll ����������������� need to bind the Roles property
to a valid collection. In the following code we've declared a public field with the

Communication in Workflows

[188]

name of validRoles. In the workflow Initialized event handler, we add a single
new WebWorkflowRole instance to the validRoles collection.

public partial class BugFlowWithRoles : SequentialWorkflowActivity
{
 public WorkflowRoleCollection validRoles =
 new WorkflowRoleCollection();

 private void BugFlowWithRoles_Initialized(object sender,
 EventArgs e)
 {
 validRoles.Add(new WebWorkflowRole("TechLeads"));
 }
}

With our roles in place, we need to configure our activities to utilize the roles.

When a local communication service host raises an event for the workflow, it can
pass along a Windows identity parameter in the ExternalDataEventArgs object's
Identity property. The activity will compare the roles assigned to the identity to the
roles in the Roles collection. If there is a match, the activity will continue execution.
If there is no match the activity will throw a WorkflowAuthorizationException.
We could manage this exception with a fault handler in our workflow, or let the
exception terminate the workflow. Note that if the local communication service does
not explicitly pass an identity in the event arguments, the workflow runtime will use
the identity associated with the current thread.

When we use the CallExternalMethod and HandleExternalEvent activities to
communicate with a host, we are working at a relatively high level of abstraction.
The built-in features like role-based authorization and correlation take away many of
the headaches associated with messaging systems. However, there can come

Chapter 8

[189]

a time when a design requires the additional flexibility that comes from working
closer to the metal. In the next section, we'll look at the queuing mechanism that lives
underneath these high‑level communication activities.

Workflow Queues
If you think back to the diagram at the beginning of this chapter, you'll remember
our conversation about the workflow runtime intercepting events. It's the runtime's
responsibility to deliver an event to the proper activity inside a specific workflow
instance. But how does the runtime deliver an event? The runtime can't just raise the
event on an arbitrary thread—only one thread can execute inside an instance at a time.

The answer is a queuing service that is part of the workflow runtime. Activities
use this service to create queues that can hold incoming data. An activity can then
subscribe for a notification when an item arrives in the queue. These queues become
part of the workflow and are serialized with the workflow when the persistence
service serializes and saves a workflow instance. This is one reason why our
data-exchange event arguments are marked as serializable.

When the runtime delivers an event to a workflow, it picks the correct queue for the
event, and adds the event arguments to the queue. Each queue exposes information
that will allow the runtime to match up types and correlation parameters when
selecting the correct queue. At the bottom of the screenshot overleaf, we've hinted
that the runtime will use the workflow queue name to route the event. We'll see
details about the queue name in the next section.

Communication in Workflows

[190]

WorkflowQueue and WorkflowQueueInfo
The screenshot on the page opposite shows the WorkflowQueue class, which
represents a queue inside a workflow instance, and the WorkflowQueueInfo class,
which can describe a queue. Typically, when we use event listening activities like
HandleExternalEvent or Delay activities, we don't need to know about these
underlying queues. However, these queues can enable a number of scenarios that are
impossible at the higher level of abstraction. Let's take a look at some examples.

Chapter 8

[191]

Finding the Waiting Activity
Let's return to our workflow from the beginning of the chapter. Inside the workflow
we used HandleExternalEvent activities inside two branches of a Parallel
activity. These event handlers wait for vote events to arrive from the local
communication service, and use correlation tokens to ensure the vote arrives in
the correct branch. We will call the following code inside an event handler for the
runtime's WorkflowIdled event. The runtime fires this event when the workflow is
blocked and waiting for events to arrive.

static void DumpQueueInfo(WorkflowInstance workflow)
{
 ReadOnlyCollection<WorkflowQueueInfo> queueInfos;
 queueInfos = workflow.GetWorkflowQueueData();

 Console.WriteLine("Queue Info for {0}",
 workflow.InstanceId);

 for (int i = 0; i < queueInfos.Count; i++)
 {
 ��������������������Console.WriteLine();
 Console.WriteLine("Queue #{0}", i.ToString());
 ���Console.WriteLine(queueInfos[i].QueueName);
 Console.Write("Subscribed activities: ");

 ReadOnlyCollection<string> names =
 queueInfos[i].SubscribedActivityNames;

Communication in Workflows

[192]

 foreach (string name in names)
 {
 Console.Write("{0} ", name);
 }
 Console.WriteLine();
 Console.WriteLine();
 }
}

For each queue in the workflow instance, we will print out the queue's name and a
list of subscribed activities. The output will look as shown below:

From this output, we can see there are two queues in our workflow instance. Where
we printed the queue name we see Message Properties output. It turns out the name
of these queues described the types of events they are waiting for. Remember, queue
names in a workflow instance must be unique for the runtime to deliver an event
to the correct queue. Both queues contain the same Interface Type and Method
Name (event name) in their respective names. Fortunately, the Correlation Values,
which are also part of the queue name, are different. These correlation values are the
values of the userName parameters that we passed to the service method with the
CorrelationInitializer attribute present (RequestVote).

If we want to work with queue names for the
HandleExternalEvent activity in a strongly typed
manner, we can cast the queue name to an instance
of the EventQueueName class. The class provides
InterfaceType and MethodName properties to break the
queue name into its constituent parts. There is also a method
(GetCorrelationValues) to inspect the correlation values.

Chapter 8

[193]

It should now be obvious that when the workflow runtime needs to deliver an event
to a workflow activity, it doesn't go looking for a specific activity, but for a specific
queue. The runtime can compare the incoming event information (interface, name,
and correlation values) to these queue names to find the proper queue for the event.
The activity only needs to wait for events to arrive in the queue.

From the output in the screenshot below, we can also deduce which activities are
waiting for events. These activities will appear in the list of subscribed activities.
Let's say the analyst votes immediately, and our workflow returns to an idle state to
wait for the tech lead to vote. Our queue dump will look as shown below:

Now we are down to a single blocking activity. Our application could use this type
of queue information to troubleshoot or assist with blocked workflows (we could
also use tracking information).

Canceling a Waiting Activity
What happens if we just want to cancel a waiting activity? Perhaps the vote will not
be forthcoming because our company fired all the technical staff. This is another
scenario where queue operations are useful.

The WorkflowInstance class offers an EnqueueItem method. Given a queue
name and an object, the EnqueueItem method will place the object into the queue
of the given name. If we place an exception object in the queue, we can cancel a
HandleExternalEvent activity with an error:

 ReadOnlyCollection<WorkflowQueueInfo> queueInfos;
 queueInfos = workflowInstance.GetWorkflowQueueData();

 foreach (WorkflowQueueInfo queueInfo in queueInfos)
 {
 workflowInstance.EnqueueItem(
 queueInfo.QueueName,
 new Exception(),
 null,

Communication in Workflows

[194]

 null
);
 }

The workflow response to this exception will depend on the design of the workflow.
If the workflow has a fault handler in scope, the new exception will bubble up to
the fault handler. If there is no fault handler in scope, the exception will lead to a
workflow termination.

Communicating with Queues
Workflow queues are for all forms of inbound communications. When we are using
HandleExternalEvent and Delay activities, these queues are in play even when we
don't interact with them directly. This higher level of abstraction comes at the cost of
defining and adhering to formal communication interfaces.

There may be workflows that require more flexibility in their communication
scenarios. In these cases we can create queues, perhaps from our own custom activities,
that can receive data directly from the host process. The cost of this flexibility is the
additional code required to manage and maintain our custom queues.

Web Service Communication
Not all communications will be local communications. Windows Workflow provides
web service interoperability as an additional feature. WF allows us to expose a
workflow as a web service, and consume a web service from a workflow.

Workflows as Web Services
In this section, we'll build a workflow to deploy as a web service. Our starting project
will be a sequential workflow library. A library is ideally suited for hosting in an
ASP.NET web application. We can rename Workflow1.cs in the new project to
HelloWorldWorkflow.

Just like local communication services, web services require a contract that defines
the members of a web service. The contract is an interface, but without all the data
exchange attributes we've used in previous communication interfaces. The interface
for our HelloWorld workflow is shown below:

interface IHelloWorldService
{
 string GetHelloWorldMessage(string name);
}

Chapter 8

[195]

WebServiceInput Activity
The first activity for a web service workflow will be a WebServiceInput activity.
The WebServiceInput activity represents a method in our web service contract that
receives data from a web service request. Dropping a WebServiceInput activity
into the designer and configuring the activity is somewhat similar to dropping and
configuring a HandleExternalEvent activity. We need to set the InterfaceType
and MethodName properties. Our IHelloWorldService interface only defines a
single method: GetHelloWorldMessage. To implement this method we only need to
configure a WebServiceInput activity as we have in the screenshot below:

Another important property in a WebServiceInput activity is the IsActivating
property. This property tells the workflow runtime that invoking the
GetHelloWorldMessage web method will start execution of our workflow. We can
have multiple WebServiceInput activities inside a workflow when we expect to
see a sequence of web service calls to complete the workflow. Only the first input
activity should have the IsActivating property set to true.

The workflow designer will examine the web service method we are implementing
to uncover input parameters. The designer will make input parameters available for
binding in the Properties windows. In the screenshot above we are using a binding
to place the incoming name parameter into a _name field in our workflow.

Notice we still have a validation error in our input activity (there is a red exclamation
point in the upper right of the shape). A WebServiceInput activity is not complete
until we couple the activity with a WebServiceOutput activity.

Communication in Workflows

[196]

WebServiceOutput Activity
A WebServiceOutput activity returns a response to web service clients. The
InputActivityName is a required property on this activity. In the screenshot
below we've dropped an output activity as the second activity in our workflow,
and configured the InputActivityName with the name of our input activity. Both
activities will now pass validation.

A WebServiceFault activity exists to model exceptions in web
services. The activity will return a SOAP exception to the client.
We do not have a WebServiceFault in this workflow.

In the screenshot above we've also configured a SendingOutput event handler,
and bound the return value (the output of our web service) to a _result field in
our workflow class. The entire listing of the workflow class appears below. In the
SendingOutput event handler we build a response for the client and place the result
in the _result field.

public sealed partial class HelloWorldWorkflow :
 SequentialWorkflowActivity
{
 public HelloWorldWorkflow()
 {
 InitializeComponent();
 }

 public string _name = String.Empty;
 public string _result;

 private void SendingOutput(object sender, EventArgs e)

Chapter 8

[197]

 {
 _result = String.Format(
 "Hello World! Hello, {0}!",
 _name);
 }
}

Once we are sure the workflow compiles, we can move to make the service available
for testing by publishing the web service.

Publishing Web Service Workflows
Publishing a workflow as a web service is a relatively simple operation. We need to
right-click our workflow project and select Publish as Web Service. This action will
kick off a series of steps inside Visual Studio. Visual Studio will create a new web
service project, and add the project to our solution. The new project will have the
name of our project followed by _WebService.

The new project will only contain a few files, and a reference to our workflow
project. One file will be an asmx file, where asmx is the common extension for an
ASP.NET web service endpoint. The generated contents of this file will look like the
following:

<%@ WebService
 Class="Chapter8_WebService.HelloWorldWorkflow_WebService"
%>

The above is all the code necessary to wire up a workflow as a web service
endpoint. The generated project will also include a web.config file. A portion of the
configuration is shown below. ��� Note that some type namespaces have been removed
to allow the code to fit on a page.

 <section
 name="WorkflowRuntime"
 type="WorkflowRuntimeSection,
 System.Workflow.Runtime,
 Version=3.0.00000.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 </configSections>
 <WorkflowRuntime Name="WorkflowServiceContainer">
 <Services>
 <add
 type="ManualWorkflowSchedulerService,
 System.Workflow.Runtime,
 Version=3.0.0.0, Culture=neutral,

Communication in Workflows

[198]

 PublicKeyToken=31bf3856ad364e35"/>
 <add
 type="DefaultWorkflowCommitWorkBatchService,
 System.Workflow.Runtime,
 Version=3.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 </Services>
 </WorkflowRuntime>
<system.web>
 <httpModules>
 <add
 type="WorkflowWebHostingModule,
 System.Workflow.Runtime,
 Version=3.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"
 name="WorkflowHost"/>
 </httpModules>
</system.web>

Notice the web.config replaces the default workflow scheduler with the manual
workflow scheduler. We covered these services in Chapter 6. The manual workflow
scheduler is the preferred scheduler in an ASP.NET scenario because it can execute
the workflows synchronously on the same thread as the incoming web request.

The WorkflowWebHostingModule enables routing a client to an existing workflow
instance using client-side cookies. In our scenario, the workflow instance will not
need to span multiple web requests, so this service won't be utilized.

We can now right-click the asmx file and select View In Browser from the context
menu. The ASP.NET web development web server will host the web service. We
should see a browser page appear with a link to GetHelloWorldMessage. If we
follow the link we'll see the screen as shown in the screenshot on the next page,
which presents an opportunity to manually test the method.

Chapter 8

[199]

The ASP.NET web development web server (WebDev) will pick
a random port for serving up content and web services. This is a
fine strategy for testing websites for development, but can make
it difficult to reference the web service from another .NET project
(because the port number can change between sessions). For best
results, create a new virtual directory in IIS and map the virtual
directory to the web service project's root. Another option is to
choose a specific port with the WebDev server by going into the
web project properties and setting use dynamic port to false,
and selecting a port number.

Filling in a name and clicking invoke should successfully execute our workflow. The
result is shown overleaf.

Communication in Workflows

[200]

Our web service is ready for consumption. In the next section, we will build a
workflow to call this web service.

Workflows as Web Service Clients
To consume the web service we built, we can return to our previous project, or
create a new console-mode workflow application. Any project can consume a
web service, even other class library projects and web service application projects.
In the screenshot below, we are adding a new Sequential Workflow (with code
separation) to our project named HelloWorldClient.

Chapter 8

[201]

InvokeWebService Activity
As soon as the workflow designer opens, we can drag‑and‑drop an
InvokeWebService activity into the workflow. The designer will open a dialog box
asking us to create a web reference. We can enter the URL to the web service we
created earlier in the URL text box. Alternatively, if the web service is in the same
solution, we can click on the Web Services in this solution link in the dialog box.
Once the dialog box locates the web service, the display will change as shown below:

You can see that we've changed the web reference name to HelloWorldService. This
value sets the name of the web service proxy class that Visual Studio generates on
our behalf. It is through the proxy that we will invoke the web service. Clicking the
Add Reference button will add the proxy to our project.

Returning to the designer, we can now configure our InvokeWebService activity
(see the screenshot overleaf). The ProxyClass property is a drop‑down list
containing all the web reference proxy classes in the project. ������������������������� In the screenshot, we've
selected a proxy and selected����� the MethodName from a drop‑down list. We have also
configured our parameters, and bound an event handler.

Communication in Workflows

[202]

The code-behind for our workflow looks like the following:

public partial class HelloWorldClient :
 SequentialWorkflowActivity
{
 public string _helloWorldResult;

 private void invokeHelloWorld_Invoked(
 object sender,
 InvokeWebServiceEventArgs e)
 {
 Console.WriteLine("Hello world returned " +
 _helloWorldResult);
 }
}

Running this workflow will result in a SOAP web service call to our last workflow.

Summary
In this chapter we've delved into the communication capabilities of Windows
Workflow. We've seen how correlation attributes and correlation tokens can tie
together related activities, and examined role‑based authorization. Underneath the
event-driven activities we've seen how workflow queues manage events and data
arriving at the workflow. We can use these queues for our own communication
purposes, or query the queues to see which activities are waiting for events inside a
workflow. Finally, we examined the web service capabilities of Windows Workflow
by building a simple web service, and a client to consume the web service.

Rules and Conditions
Software applies knowledge to data. This is true for all software from business
applications to video games. The knowledge inside software is generally a
combination of procedural knowledge and declarative knowledge. Procedural
knowledge is information about how to perform a task, like how to make a car and
hotel reservation using an electronic travel broker. Procedural knowledge is easy to
express using a general-purpose programming language like C#, Visual Basic, or any
of their predecessors.

Declarative knowledge, on the other hand, is about the relationships in data. We
often refer to declarative knowledge as business rules. For example, a business rule
might say that hotel reservations made at least 14 days in advance receive a 10%
discount, unless the cost of the room is less than $100. The date and the price share
a relationship and can affect each other. Expressing this type of knowledge using a
general-purpose programming language isn't difficult on a small scale, but breaks
down as the amount of knowledge grows. We must transform the knowledge into
procedural code using if-then-else statements. Many software applications require
an enormous number of business rules: tax preparation systems, mortgage-banking
software, and hotel reservation systems, to name just a few.

Encoding business rules into procedural code makes the rules harder to find, read,
and modify. Over the years, the software industry has invented tools for working
with business rules. We categorize these tools as rules engines. A rules engine
specializes in making declarative knowledge easier to implement, process, isolate,
and modify.

Windows Workflow provides a rules engine and offers the best of both worlds.
We can use Sequence activities to implement procedural knowledge, and Policy
activities to execute declarative knowledge.

In this chapter, we will focus on the activities that use rules and conditions for
declarative knowledge. We will start by looking at activities that use conditions, like

Rules and Conditions

[204]

the While activity. We will also discuss the Policy activity, which is a rules engine,
and the ConditionedActivityGroup, which conditionally executes activities based
on When and Until conditions.

What are Rules and Conditions?
Three important concepts we will use in this chapter are conditions, rules, and rule
sets. In WF, conditions are chunks of logic that return true or false. A number of WF
activities utilize conditions to guide their behavior. These activities include the While
activity, the IfElseBranch activity, and the ConditionedActivityGroup. The
While activity, for instance, loops until its Condition property returns false. We can
implement conditions in code or in XML.

Rules are conditions with a set of actions to perform. Rules use a declarative
if-then-else style, where the if is a condition to evaluate. If the condition evaluates
to true, the runtime performs the then actions, otherwise the else actions. While
this sounds like procedural code, there are substantial differences. The if-then-else
constructs in most languages actively change the flow of control in an application.
Rules, on the other hand, passively wait for an execution engine to evaluate their logic.

A rule set is a collection of one or more rules. As another example from the hotel
business, we might have three rules we use to calculate the discount on the price of a
room (shown here in pseudo-code).

if person's age is greater than 55
 then discount = discount + 10%

if length of stay is greater than 5 days
 then discount = discount + 10%

if discount is greater than 12%
 then discount = 12%

Before we can evaluate these rules, we need to group them inside a rule set. A rule
set allows us to assign priorities to each rule and control their order of evaluation.
WF can revisit rules if later rules change the data used inside previous rules. We
can store rules in an external XML file and pass the rules to the workflow runtime
when creating a new workflow. WF provides an API for us to programmatically
update, create, and modify rule sets and rules at run time. The features and
execution semantics described above give us more flexibility and control compared
to compiled code. For instance, the APIs allow us to dynamically customize rules to
meet the needs of a specific customer or business scenario.

We will return to rules and rule sets later in the chapter. For now we will drill into
conditions in Windows Workflow.

Chapter 9

[205]

Working with Conditions
The While activity is one activity that uses a condition. The While activity will
repeatedly execute its child activity until its Condition property returns false. The
Properties window for the While activity allows us to set this Condition property
to a Code Condition or a Declarative Rule Condition. In the screenshot below,
we've told the While activity to use a code condition, and that the code condition is
implemented in a method named CheckBugIndex.

Code Conditions
A code condition is an event handler in our code-beside file. A code condition
returns a boolean value via a ConditionalEventArgs parameter. Because a code
condition is just another method on our workflow class, the conditional logic
compiles into the same assembly that hosts our workflow definition.

The implementation of CheckBugIndex is shown below. We have an array of
bug objects for the workflow to process. The array might arrive as a parameter
to the workflow, or through some other communication mechanism like the
HandleExternalEvent activity. The workflow uses the bugIndex field to track its
progress through the array. Somewhere, another activity will increment bugIndex as
the workflow finishes processing each bug. If the array of bugs is not initialized, or
if the bugIndex doesn't point to a valid entry in the array, we want to halt the While
activity by having our code condition return a value of false.

private Bug[] bugs;
private int bugIndex = 0;

protected void CheckBugIndex(object sender, ConditionalEventArgs e)
{

Rules and Conditions

[206]

 if (bugs == null || bugIndex >= bugs.Length)
 {
 e.Result = false;
 }
 else
 {
 e.Result = true;
 }
}

Code conditions, like our method above, are represented by CodeCondition objects
at run time. The CodeCondition class derives from an abstract ActivityCondition
class (see the screenshot below).

Because the Condition property of the While activity accepts an ActivityCondition
object, we have the choice of assigning either a CodeCondition or a
RuleConditionReference. Regardless of which type we choose, all the runtime needs
to do is call the Evaluate method to fetch a Boolean result. A CodeCondition will
ultimately fire its Condition event to retrieve this Boolean value. It is this Condition
event that we are wiring up to the method in our code-behind file. We can see this a
little more clearly by looking at the XAML markup produced by the designer.

<WhileActivity x:Name="whileActivity1">
 <WhileActivity.Condition>

 <CodeCondition Condition="CheckBugIndex" />

 </WhileActivity.Condition>

 <!-- child activity goes here-->
</WhileActivity>

Chapter 9

[207]

We will see how a RuleConditionReference works in the next section.

Rule Conditions
Declarative rule conditions work differently from code conditions. If we expressed
our CheckBugIndex condition as a declarative rule, we would just need to type the
following string into the rule condition designer:

bugs == null || bugIndex >= bugs.Length

Windows Workflow will parse and evaluate this rule at run time. We don't need
to create a new method in our workflow class. The definition for this expression
will ultimately live inside a .rules file as part of our workflow project. A
RuleConditionReference object will reference the expression by name, as every
rule in WF has a name.

As an example, suppose we are creating a new workflow with a While activity, and
we want the activity to loop until a _retryCount field exceeds some value. After
we drop the While activity in the designer, we can open the Properties windows
and click the drop‑drown list beside the Condition property. This time, we will
ask for a Declarative Rule Condition. The designer will make two additional
entries available—ConditionName and Expression. Clicking in the text box beside
ConditionName will display the ellipsis pointed to in screenshot below:

Clicking the ellipsis button launches the Select Condition dialog box, shown in the
following screenshot. This dialog box will list all of the declarative rule conditions
in our workflow, and will initially be empty. Along the top of the dialog box are
buttons to create, edit, rename, and delete rules. The Valid column on the right-hand
side will let us know about syntax errors and other validation problems in our rules.
When we select a condition, the Condition Preview area will show us the code for
the condition.

Rules and Conditions

[208]

At this point we want to create a new rule. Clicking the New… button will launch
the Rule Condition Editor dialog box as shown below:

Inside this editor is where we can type our expression. The expression we've entered
will return true as long as the _retryCount field is less than 4. If we type the C#
this keyword (or the Me keyword in Visual Basic), an IntelliSense window will
appear and display a list of fields, properties, and methods in our workflow class.

Clicking the OK button in the editor will return us to the Select Condition dialog
box, where we can click the Rename button to give our condition a friendly name
(the default name would be Condition1, which isn't descriptive). We will give our
rule the name of RetryCountCondition.

The .rules File
After all these button clicks, a new file will appear nested underneath our workflow
definition in the Solution Explorer window. The file will have the same name as

Chapter 9

[209]

our workflow class name but with an extension of .rules. Inside is a verbose XML
representation of the condition we wrote.

<RuleDefinitions
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow">
 <RuleDefinitions.Conditions>
 <RuleExpressionCondition Name="RetryCountCondition">

 <RuleExpressionCondition.Expression>
 <ns0:CodeBinaryOperatorExpression Operator="LessThan"

 xmlns:ns0="clr-namespace:System.CodeDom;

 Assembly=System, Version=2.0.0.0,
 Culture=neutral,
 PublicKeyToken=b77a5c561934e089">
 <ns0:CodeBinaryOperatorExpression.Left>
 <ns0:CodeFieldReferenceExpression

 FieldName="_retryCount">

 <ns0:CodeFieldReferenceExpression.TargetObject>
 <ns0:CodeThisReferenceExpression />
 </ns0:CodeFieldReferenceExpression.TargetObject>
 </ns0:CodeFieldReferenceExpression>
 </ns0:CodeBinaryOperatorExpression.Left>
 <ns0:CodeBinaryOperatorExpression.Right>
 <ns0:CodePrimitiveExpression>
 <ns0:CodePrimitiveExpression.Value>
 <ns1:Int32
 xmlns:ns1="clr-namespace:System;
 Assembly=mscorlib, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"
 >
 4

 </ns1:Int32>
 </ns0:CodePrimitiveExpression.Value>
 </ns0:CodePrimitiveExpression>
 </ns0:CodeBinaryOperatorExpression.Right>
 </ns0:CodeBinaryOperatorExpression>
 </RuleExpressionCondition.Expression>
 </RuleExpressionCondition>
 </RuleDefinitions.Conditions>
</RuleDefinitions>

If you remember our XAML discussion from Chapter 2, you'll realize this is a XAML
representation of objects from the System.CodeDom namespace. The CodeDom (Code
Document Object Model) namespace contains classes that construct source code in a
language-agnostic fashion. For instance, the CodeBinaryOperatorExpression class

Rules and Conditions

[210]

represents a binary operator between two expressions. The instance in our XAML
is a LessThan operator, but could be an addition, subtraction, greater than, or
bitwise operation.

WF uses classes in the System.CodeDom.Compiler namespace to dynamically generate
and compile source code from the CodeDom object graph built from XAML. Once the
runtime compiles the expression, WF can evaluate the rule to inspect its result.

Available Expressions
The small pieces of code we write for conditions are valid C# and VB.NET
expressions. The expressions must evaluate to a Boolean value to be valid. For
instance, all of the following expressions are valid. We can invoke methods, retrieve
properties, index into arrays, and even use other classes from the base class library,
like the Regex class for regular expressions.

this.x + 1 < 100

this.name.StartsWith("Scott")

Regex.Match(this.AreaCode, @"^\\(\\d{3}\\)\\s\\d{3}-\\d{4}$").Success

this.CheckIndex()

this.GetResult() != 10

this.numbers[this.x] == this.numbers[this.x + 1]

Expressions must evaluate to true or false. The following examples are invalid:

Console.Write(this.name)

this.x = this.GetResult()

Rules and Activation
In Chapter 2, we discussed workflow activation. Activation allows us to pass a
XAML definition of our workflow to the workflow runtime, instead of using a
compiled workflow definition. For instance, let's assume we have the following
workflow definition in a file named Activation.xoml.

<SequentialWorkflowActivity
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow">
 <WhileActivity>
 <WhileActivity.Condition>
 <RuleConditionReference ConditionName="Condition1" />
 </WhileActivity.Condition>
 <DelayActivity />
 </WhileActivity>
</SequentialWorkflowActivity>

Chapter 9

[211]

Let's also assume our condition (Condition1) is in a file named Activation.rules.
We can load the workflow and the rules file with the following code:

XmlReader definitionReader;
definitionReader = XmlReader.Create(@"..\..\conditions\Activation.
xoml");

XmlReader rulesReader;
rulesReader = XmlReader.Create(@"..\..\conditions\Activation.rules");

Dictionary<string, object> parameters = null;
WorkflowInstance instance;
instance = workflowRuntime.CreateWorkflow(
 definitionReader, rulesReader, parameters
);

Activation gives us a great deal of flexibility. For instance, we could store workflow
and rule definitions inside database records, and update the rules without
recompiling or redeploying an application.

The Conditioned Activity Group
Before we finish talking about conditions, we need to take a closer
look at one condition-centric activity that is flexible and powerful. The
ConditionedActivityGroup (CAG) executes a collection of child activities based on
a WhenCondition attached to each child. Furthermore, the CAG continues to execute
until an UntilCondition on the CAG returns true. This behavior makes the CAG
somewhat of a cross between a While activity and a Parallel activity.

When we drop the CAG into the workflow designer, it will appear as shown in the
screenshot overleaf. In the top of the activity shape is an activity storyboard where
we can drop activities. The arrows on either side of the storyboard allow us to scroll
through the child activities in the storyboard. When we select an activity in the
storyboard, the selected activity will appear in the bottom of the activity shape inside
the preview box. We can toggle between preview and edit modes using the button in
the middle of the CAG's shape.

Rules and Conditions

[212]

In the following screenshot, we've arranged some activities in the CAG's storyboard.
The first activity is a Sequence activity, and we've selected the activity for editing.
The bottom of the CAG's shape displays the Sequence activity in detail. Inside the
Sequence activity, we have placed two Code activities.

Since the Sequence activity is a direct descendant of the CAG, we can assign the
Sequence activity a WhenCondition (see the screenshot on the next page). As with all
conditions, the WhenCondition can be a code condition, or a declarative rule.

Chapter 9

[213]

The CAG only executes a child activity if the WhenCondition returns true; however,
the WhenCondition is optional. If we do not specify a WhenCondition, the child
activity will execute only once. No matter how many times the CAG continues to loop,
an activity without a WhenCondition will execute only during the first iteration.

The CAG repeatedly executes child activities until one of two things happens.
First, the CAG itself has an UntilCondition (see the screenshot below). When
the UntilCondition returns true, the CAG immediately stops processing and
also cancels any currently executing child activities. Secondly, the CAG will stop
processing if there are no child activities to execute. This can occur when the
WhenConditions of all child activities return false.

Rules and Conditions

[214]

It's important to note that the CAG evaluates the UntilCondition when it first begins
executing. If the condition returns true at this point, no child activities will execute.
Also, the CAG evaluates the UntilCondition each time a child activity finishes
execution. This means only a subset of the child activities may execute. Finally, the
CAG doesn't guarantee the execution order of child activities, which is why the CAG
is similar to the Parallel activity. For example, dropping a Delay activity inside the
CAG will not block the CAG from executing its other child activities.

When to Use the CAG
The CAG is useful in goal-seeking scenarios. Let's say we are building a workflow to
book flight, hotel, and car reservations for a trip. Inside the workflow, we might use
web service activities to request pricing information from third‑party systems. We can
arrange the web service calls inside a CAG to request prices repeatedly until we meet
a goal. Our goal might be for the total price of the trip to meet a minimum cost, or we
might use a more advanced goal that includes cost, total travel time, and hotel class.

Working with Rules
The declarative rule conditions we've seen in the previous sections only return a
value of true or false. A condition doesn't modify a workflow. A rule, on the other
hand, is both a condition and a set of actions in an if-then-else form. The Rule class
in Windows Workflow represents this if-then-else concept. The class diagram in the
following screenshot displays classes with important relationships to the Rule class.

Chapter 9

[215]

The first concept to notice is that the RuleSet class manages a collection of rules.
The Policy activity will use the Execute method of a RuleSet to process the rule
collection. We will cover the Policy activity in more detail soon.

Every Rule inside a RuleSet has a Condition property that references a single
RuleCondition object. The RuleSet logic will use the Evaluate method of a
RuleCondition to retrieve a value of true or false.

Every Rule maintains two collections of RuleAction objects—the ElseActions and
the ThenActions. When a rule's condition evaluates to true, the runtime invokes
the Execute method of each action in the ThenActions collection; otherwise the
runtime invokes the Execute method of the actions in the ElseActions collection.

Now that we have a basic understanding of how rules work on the inside, let's take a
look at the Policy activity.

The Policy Activity
The Encarta dictionary describes policy as a program of actions adopted by an
individual, group, or government. Policies are everywhere in real life. Universities
define policies for student admissions, and banks define policies for lending money.
U.S. banks often base their lending policies on credit scores, and a credit score
takes into account many variables, like an individual's age, record of past payment,
income, and outstanding debt. Business policy can become very complex, and is
full of declarative knowledge. As we discussed at the beginning of the chapter,
declarative knowledge is about the relationships in data. For example, one bank's
policy might say that if my credit score is less than 500 points, they will charge me an
extra one percent in interest.

We also discussed in the beginning of the chapter how declarative knowledge is not
well suited to general-purpose programming languages like C# and Visual Basic.
Instead, specialized tools we call rules engines are best suited for managing and
executing declarative knowledge. The Policy activity in Windows Workflow is one
such rules engine.

Creating a Policy Workflow
Although we can use a Policy activity almost anywhere inside of a larger workflow,
we will be using a simple workflow with only a single Policy activity inside. All
we need is to create a new sequential workflow, and drag a Policy shape into the
designer (see the screenshot overleaf).

Rules and Conditions

[216]

We can also see the Properties windows in the screenshot above. The
RuleSetReference property is the primary property of a Policy activity. We can
click the ellipsis button in the Properties window to launch the Select Rule Set
dialog box, shown in the screenshot below:

When we first create a workflow, we won't have any rule sets defined. A workflow
can contain multiple rule sets, and each rule set will contain one or more rules.
Although a Policy activity can only reference a single rule set, we might design a
workflow with multiple Policy activities inside, and need them each to reference a
different rule set.

Chapter 9

[217]

Clicking on the New button in the dialog box will launch the Rule Set Editor dialog
box as shown below:

The Rule Set Editor exposes many options for rules and the rule set. For now, we
are going to concentrate on conditions and actions. Let's suppose we are defining a
policy to score a software bug. The score we compute will determine if we need to
send notifications to team members who will need to take immediate action. The
bug will be a member field in our workflow class, and will expose various properties
(Priority, IsOpenedByClient) that we will inspect to compute a score. The
BugDetails class listed below defines the bug:

public enum BugPriority
{
 Low,
 Medium,
 High
}

public class BugDetails
{
 private string _title;
 public string Title
 {

Rules and Conditions

[218]

 get { return _title; }
 set { _title = value; }
 }

 private bool _openedByClient;
 public bool IsOpenedByClient
 {
 get { return _openedByClient; }
 set { _openedByClient = value; }
 }

 private bool _isSecurityRelated;
 public bool IsSecurityRelated
 {
 get { return _isSecurityRelated; }
 set { _isSecurityRelated = value; }
 }

 private bool _isVerified;
 public bool IsVerified
 {
 get { return _isVerified; }
 set { _isVerified = value; }
 }

 private BugPriority _priority;
 public BugPriority Priority
 {
 get { return _priority; }
 set { _priority = value; }
 }

 private int _score;
 public int Score
 {
 get { return _score; }
 set { _score = value; }
 }

}

Our first three rules will determine a bug's base score by looking at the bug's priority
setting. We can start by clicking the Add Rule button in the dialog box. Our first rule
will have the condition of this.Bug.Priority == BugPriority.Low, and a Then
action of this.Score = 0. In the dialog box, we can give this rule a meaningful name
of SetScore_LowPriority.

Chapter 9

[219]

The conditions in our rules are just like the conditions we examined earlier in the
chapter. We can use tests for equality, inequality, greater than, or less than. We can
call methods, and index into arrays. As long as the condition's expression returns a
true or false, and can be represented by types in the System.CodeDom namespace, we
will have a valid expression.

The actions in our rules have even greater flexibility. An action can also invoke
methods and interact with fields and properties, but is not restricted to returning a
Boolean value. In fact, most actions will perform assignments and manipulate fields
and properties in a workflow. In the SetScore_LowPriority rule, we've used a rule
action to assign an initial score of 0. Remember too that the action properties on rules
are collections, meaning we can specify multiple actions for then and else. We will
need to place each action on a separate line inside the action text box.

Our bug can take on one of three possible priority values (Low, Medium, or High),
so we'll need a rule to set the bug score for each possible priority level. Once we've
entered the three rules, the Rule Set Editor should look as shown in the following
screenshot. Notice we have left the Priority and Reevaluation properties for each
rule at their default values. We will return to cover these properties soon.

Rules and Conditions

[220]

Evaluation
These rules, like the declarative conditions we used earlier, will live in a .rules file.
When a rule set executes, it will process each rule by evaluating the rule's condition
and executing the then or else actions. The rule set continues processing in this
fashion until it has processed every rule in the rule set, or until it encounters a Halt
instruction. Halt is a keyword we can place in a rule's action list that will stop the
rule set from processing additional rules.

With these rules in place, we could execute our workflow and watch the Policy
activity compute our bug score by executing the rule set we've defined. There is still
an additional rule we would like to add to our rule set, however. The rule should
say, "��� If the bug's score is greater than 75, then send an email to the development
team".��� This rule presents a potential problem, however, since it would not work if
the rule set evaluates this rule �� before evaluating the rules that assign the score.���� We
need to make sure the score for a bug is set first, and we can achieve this goal using
rule priorities.

Priority
Each rule has a Priority property of type Int32. We can see this property exposed
in the Rule Set Editor as shown in the following screenshot. Before executing rules,
the rule set will sort its rules into a list ordered by priority. A rule with a high
priority value will execute before a rule with a low priority value. The rule with the
highest priority in the rule ��� set�� will execute first. Rules of equal priority will execute
in the alphabetic order of their Name property.

To make sure our notification rule is evaluated last, we need to assign the rule a
priority of 0, and ensure all other rules have a higher priority. In the following
screenshot, we've given our first three rules a priority of 100. The number we use for
priority is arbitrary, as it only controls the relative execution order. It is always a good
idea to leave a gap between priority values so we can squeeze in more rules later on.

Chapter 9

[221]

Rule Dependencies
All the rules we've written so far are independent. Our rules do not modify any
fields in the workflow that other rules depend upon. Suppose, however, we had a
rule that said:

"If the IsSecurityRelated property of the bug is true, set the bug Priority
to High."

Obviously, this rule impacts on the SetScore_HighPriority rule that sets our bug
score to 100 when the bug's Priority field is set to High.

One solution to this problem would be to set the relative priorities of the rules to
ensure the set score rules always execute after any rule that might set the Priority
field. However, this type of solution isn't always feasible as the rule set grows and
the dependencies between the rules become more entangled.

Fortunately, Windows Workflow can simplify this scenario. If you look back at the
class diagram in the screenshot under the section Working with Rules, you'll notice
the RuleCondition class carries a GetDependencies method, and a RuleAction
class carries a GetSideEffects method. These two methods allow the rules engine

Rules and Conditions

[222]

to match the dependencies of a rule (the fields and properties the rule's condition
inspects to compute a value) against the side effects of other rules (the fields and
properties a rule's action modifies). When an action produces a side effect that
matches a dependency from a previously executed rule, the rules engine can go back
and re-evaluate the previous rule. In rules engine terminology, we call this feature
forward chaining. The chaining feature in Windows Workflow can work implicitly
or explicitly.

Implicit Chaining
By default, the forward chaining in Windows Workflow is implicit. That is to
say, Windows Workflow takes care of managing side effects, dependencies, and
rule re-evaluation and we do not need to take any extra steps. The rules engine
examines the expressions in each rule condition and each rule action to produce
lists of dependencies and side effects. We can go ahead and write our rule as
AdjustBugPriorityForSecurity, as shown below:

Chapter 9

[223]

Now, if the workflow looks at a bug with the IsSecurityRelated property set to
true, the action of the new rule will change the bug's Priority to High. The full rule
looks like the following:

IF this.Bug.IsSecurityRelated
THEN this.Bug.Priority = BugPriority.High

The rules engine will know that three previous rules have a dependency on the
Priority property and re-evaluate all three rules. All of this happens before the
NotificationRule runs, so a bug with IsSecurityRelated set will create a score of
100, and the NotificationRule will invoke the SendNotification method.

Implicit chaining is a great feature because we don't have to calculate dependencies
manually. For implicit chaining to work, however, the rules engine must be able to
infer the dependencies by parsing the rule expression. If we have a rule that calls into
our compiled code, or into third‑party code, the rules engine can no longer resolve
the dependencies. In these scenarios, we can take advantage of chaining using
metadata attributes or explicit actions.

Chaining with Attributes
Let's suppose the logic we need to execute for a rule is complicated—so complicated
we don't feel comfortable writing all the logic declaratively. What we can do is place
the logic inside a method in our code-behind file, and invoke the method from our
rule. As an example, let's write the last rule like the following:

IF this.Bug.IsSecurityRelated
THEN this.AdjustBugForSecurity()

As we mentioned, this method call presents a problem if we need forward
chaining. The rules engine will not know which fields and properties the
AdjustBugForSecurity method will change. The good news is that Windows
Workflow provides attributes we can use to declare a method's dependencies and
side effects.

Attribute Description
RuleWrite Declares a field or property that the method will

change (a side effect of the method).
RuleRead Declares a field or property that the method will

read (a dependency of the method).
RuleInvoke Declares a method that the current method

will invoke. The engine will inspect the second
method for additional attributes.

Rules and Conditions

[224]

If a method does not carry one of the above attributes, the rules engine will assume
the method does not read or write any fields or properties. If we want forward
chaining to work with our method, we'll need to define it as follows:

[RuleWrite("Bug/Priority")]

public void AdjustBugForSecurity()
{
 // .. other work

 Bug.Priority = BugPriority.High;

 // .. other work
}

The RuleWrite attribute uses a syntax similar to the property binding syntax in
Windows Workflow. This particular RuleWrite attribute declares that the method
will write to the Priority property of the Bug class. The rules engine can also parse
a wildcard syntax, so that [RuleWrite("Bug/*")] would tell the engine that the
method writes to all the fields and properties on the bug object. The RuleRead attribute
uses the same syntax, except we would use this attribute on methods called from the
conditional part of our rules, to tell the engine about dependencies of the method.

We can use the RuleInvoke attribute when our method calls into other methods, as
shown in the following example:

[RuleInvoke("SetBugPriorityHigh")]
public void AdjustBugForSecurity()
{
 // .. other work

 SetBugPriorityHigh();

 // .. other work
}

[RuleWrite("Bug/Priority")]
void SetBugPriorityHigh()
{
 Bug.Priority = BugPriority.High;
}

In this code sample we've told the rules engine that the method called from our rule
will in turn call the SetBugPriorityHigh method. The rules engine will inspect the
SetBugPriorityHigh method and find a RuleWrite attribute that will preserve
forward chaining.

Chapter 9

[225]

Explicit Chaining
In some scenarios, we may need to call into third‑party code from our rules. This
third‑party code may have side effects, but since we do not own the code, we cannot
add a RuleWrite attribute. In this scenario, we can use an explicit Update statement
in our rule actions. For example, if we used an explicit Update statement with our
AdjustBugForSecurity method instead of the RuleWrite attribute, we'd write our
declarative rule condition like the following:

this.AdjustBugForSecurity()
Update("this/Bug/Priority/")

Note that the update statement syntax is again similar to our RuleWrite syntax, and
that there is no corresponding Read statement available. It is generally better to use
the attribute-based approach whenever possible. This explicit approach is designed
for scenarios when we cannot add method attributes, or when we need precise
control over the chaining behavior, which�� is discussed in the following section on
Chaining Behavior.

Controlling Chaining
The forward chaining behavior of the rule set is powerful. We can execute rules
and have them re-evaluated even when we don't know their interdependencies.
However, there can be times when chaining can produce unpleasant results. For
instance, it is possible to put the rules engine into an infinite loop. It is also possible
that we will write a rule that we do not want the engine to re-evaluate. Fortunately,
there are several options available to tweak rule processing.

Chaining ��������Behavior
The first option is a ChainingBehavior property on the RuleSet class. The Rule Set
Editor exposes this property with a drop‑down list labeled Chaining. The available
options are Sequential, Explicit Update Only, and Full Chaining. Full Chaining
is the default rule set behavior, and provides us with the forward chaining rule
evaluation we've described so far.

The Explicit Update Only option tells the rules engine not to use implicit chaining.
In addition, the rules engine will ignore RuleWrite and RuleRead attributes.
With Explicit Update Only selected, the only mechanism that will trigger rule re-
evaluation ��������������������� is with the explicit Update statement we described in the last section.
Explicit updates give us precise control over the rules that can cause a re-evaluation
of previous rules.

Rules and Conditions

[226]

The Sequential option disables chaining altogether. A rule set operating with
sequential behavior will execute all its rules only once, and in the order specified
by their respective Priority properties (of course, a Halt statement could still
terminate the rule processing before all rules complete execution).

Re-evaluation Behavior
Another option to control chaining is to use the ReevaluationBehavior property of
a rule. This property is exposed in the Rule Set editor by a drop‑down list labeled
Reevaluation. The available options are Always and Never.

Always is the default behavior for a rule. The rules engine will always re-evaluate a
rule with this setting, if the proper criteria are met. This setting would not override a
rule set chaining behavior of Sequential, for instance.

Never, as the name implies, turns off re-evaluation. It is important to know that the
rules engine only considers a rule evaluated if the rule executes a non-empty action.
For example, consider a rule that has Then actions, but no Else actions, like the rules
we've defined. If the rule is evaluated and its condition returns false, the rule is still a
candidate for re-evaluation because the rule has not executed any actions.

Rules Engine Tracing and Tracking
Given the various chaining behaviors, and the complexities of some real-world rule
sets, we will find it useful to see what is happening inside the rules engine. As we
discussed in Chapter 6, Windows Workflow takes advantage of the .NET 2.0 tracing
API and its own built-in tracking features to supply instrumentation information.
In this section, we will explore the tracing and tracking features of the rules engine.
Refer to Chapter 6 for general details on tracing and tracking.

Tracing Rules
To set up tracing for the rules engine we need an application configuration file with
some trace switches set. The following configuration file will log all trace information
from the rules engine to a WorkflowTrace.log file. The file will appear in the
application's working directory.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <switches>
 <add name="System.Workflow.Activities.Rules" value="All" />
 <add name="System.Workflow LogToFile" value="1" />
 </switches>
 </system.diagnostics>
</configuration>

Chapter 9

[227]

The amount of detail provided by the trace information can be useful for tracking
down chaining and logic problems in our rule sets. The rule set we've been working
with in this chapter will produce the following trace information (some trace
information is omitted for the sake of brevity).

Rule "SetScore_HighPriority" Condition dependency: "this/Bug/Priority/"
Rule "SetScore_HighPriority" THEN side-effect: "this/Score/"
Rule "SetScore_LowPriority" Condition dependency: "this/Bug/Priority/"
Rule "SetScore_LowPriority" THEN side-effect: "this/Score/"
Rule "SetScore_MediumPriority" Condition dependency:
 "this/Bug/Priority/"
Rule "SetScore_MediumPriority" THEN side-effect: "this/Score/"
Rule "AdjustBugForSecurity" Condition dependency:
 "this/Bug/IsSecurityRelated/"
Rule "AdjustBugForSecurity" THEN side-effect: "this/Bug/Priority/"
Rule "NotificationRule" Condition dependency: "this/Score/"
Rule "SetScore_HighPriority" THEN actions trigger rule
 "NotificationRule"
Rule "SetScore_LowPriority" THEN actions trigger rule
 "NotificationRule"
Rule "SetScore_MediumPriority" THEN actions trigger rule
 "NotificationRule"
Rule "AdjustBugForSecurity" THEN actions trigger rule
 "SetScore_HighPriority"
Rule "AdjustBugForSecurity" THEN actions trigger rule
 "SetScore_LowPriority"
Rule "AdjustBugForSecurity" THEN actions trigger rule
 "SetScore_MediumPriority"

This first part of the trace will provide information about dependency and side effect
analysis. By the end of the analysis, we can see which actions will trigger the re-
evaluation of other rules. Later in the trace, we can observe each step the rule engine
takes when executing our rule set.

Rule Set "BugScoring": Executing
Evaluating condition on rule "SetScore_HighPriority".
Rule "SetScore_HighPriority" condition evaluated to False.
Evaluating condition on rule "SetScore_LowPriority".
Rule "SetScore_LowPriority" condition evaluated to False.
Evaluating condition on rule "SetScore_MediumPriority".
Rule "SetScore_MediumPriority" condition evaluated to True.
Evaluating THEN actions for rule "SetScore_MediumPriority".
Evaluating condition on rule "AdjustBugForSecurity".
Rule "AdjustBugForSecurity" condition evaluated to True.
Evaluating THEN actions for rule "AdjustBugForSecurity".
Rule "AdjustBugForSecurity" side effects enable rule

Rules and Conditions

[228]

 "SetScore_HighPriority" reevaluation.
Rule "AdjustBugForSecurity" side effects enable rule
 "SetScore_LowPriority" reevaluation.
Rule "AdjustBugForSecurity" side effects enable rule
 "SetScore_MediumPriority" reevaluation.
Evaluating condition on rule "SetScore_HighPriority".
Rule "SetScore_HighPriority" condition evaluated to True.
Evaluating THEN actions for rule "SetScore_HighPriority".
Evaluating condition on rule "SetScore_LowPriority".
Rule "SetScore_LowPriority" condition evaluated to False.
Evaluating condition on rule "SetScore_MediumPriority".
Rule "SetScore_MediumPriority" condition evaluated to False.
Evaluating condition on rule "NotificationRule".
Rule "NotificationRule" condition evaluated to True.
Evaluating THEN actions for rule "NotificationRule".

There is a tremendous amount of detail in the trace. We can see the result of each
condition evaluation, and which rules the engine re-evaluates due to side effects.
These facts can prove invaluable when debugging a misbehaving rule set.

A more formal mechanism to capture this information is to use a tracking service,
which we cover in the next section.��� Although the tracking information is not as
detailed as the trace information, tracking is designed to record information in
production applications while tracing is geared for debugging.

Tracking Rules
As discussed in Chapter 6, WF provides extensible and scalable tracking features
to monitor workflow execution. One tracking service WF provides is a SQL Server
tracking service that records events to a SQL Server table. The default tracking
profile for this service records all workflow events.

To enable tracking, we'll need a tracking schema installed in SQL Server, and an
application configuration file to configure tracking. The following configuration file
will add the tracking service to the WF runtime and point to a WorkflowDB database
on the local machine.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <configSections>
 <section
 name="WorkflowWithTracking"
 type="System.Workflow.Runtime.Configuration.
 WorkflowRuntimeSection,
 System.Workflow.Runtime, Version=3.0.00000.0,

Chapter 9

[229]

 Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>
 </configSections>

 <WorkflowWithTracking>
 <CommonParameters>
 <add name="ConnectionString"
 value="Data Source=(local);Initial Catalog=WorkflowDB;
 Integrated Security=true"/>
 </CommonParameters>
 <Services>
 <add
 type="System.Workflow.Runtime.Tracking.SqlTrackingService,
 System.Workflow.Runtime, Version=3.0.00000.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>
 </Services>
 </WorkflowWithTracking>

</configuration>

If we run our bug scoring workflow with the above tracking, we can pull out
rule-related tracking information. ��� The following code uses the instance ID of the
completed workflow as a lookup key to retrieve the tracking information from the
SQL database into which the information has already been persisted.���������������� We do not need
to modify the workflow itself to use tracking.

private static void DumpRuleTrackingEvents(Guid instanceId)
{
 WorkflowRuntimeSection config;
 config = ConfigurationManager.GetSection("WorkflowWithTracking")
 as WorkflowRuntimeSection;

 SqlTrackingQuery sqlTrackingQuery = new SqlTrackingQuery();
 sqlTrackingQuery.ConnectionString =
 config.CommonParameters["ConnectionString"].Value;

 SqlTrackingWorkflowInstance sqlTrackingWorkflowInstance;

 if (sqlTrackingQuery.TryGetWorkflow(
 instanceId, out sqlTrackingWorkflowInstance))
 {

 Console.WriteLine("{0,-10} {1,-22} {2,-17}",
 "Time", "Rule", "Condition Result");

 foreach (UserTrackingRecord userTrackingRecord in
 sqlTrackingWorkflowInstance.UserEvents)
 {
 RuleActionTrackingEvent ruleActionTrackingEvent =
 userTrackingRecord.UserData as RuleActionTrackingEvent;

Rules and Conditions

[230]

 if (ruleActionTrackingEvent != null)
 {
 Console.WriteLine("{0,-12} {1,-25} {2,-17}",
 userTrackingRecord.EventDateTime.ToShortTimeString(),
 ruleActionTrackingEvent.RuleName.ToString(),
 ruleActionTrackingEvent.ConditionResult.ToString());
 }
 }
 }
}

Notice that to retrieve the rule‑tracking events we need to dig into the user data
associated with a UserTrackingRecord. The above code will produce the following
output, which includes the result of each rule evaluation.

Dynamic Updates
Earlier, we mentioned that one of the advantages to using declarative rules is that we
can dynamically modify rules and rule sets at run time. If these rules were specified
in code, we'd have to recompile and redeploy ������������������������������������ the application each time we wanted
to modify any rule sets. ������������������������ With WF, we can use the WorkflowChanges class to alter an
instance of a workflow.

If we give the following code an instance of our bug-scoring workflow, it will
initialize a new WorkflowChanges object with our workflow definition. We can then
find the bug-scoring rule set by name via a RuleDefinitions instance. Once we
have our rule set, we can make changes to our rules.

private static void ModifyWorkflow(WorkflowInstance instance)
{
 Activity workflowDefinition = instance.GetWorkflowDefinition();

 WorkflowChanges workflowchanges;
 workflowchanges = new WorkflowChanges(workflowDefinition);
 CompositeActivity transient = workflowchanges.TransientWorkflow;

 RuleDefinitions ruleDefinitions =

Chapter 9

[231]

 (RuleDefinitions)transient.GetValue(
 RuleDefinitions.RuleDefinitionsProperty
);

 RuleSet ruleSet = ruleDefinitions.RuleSets["BugScoring"];
 foreach (Rule rule in ruleSet.Rules)
 {
 if (rule.Name == "AdjustBugPriorityForSecurity")
 {
 rule.Active = false;
 }

 if (rule.Name == "NotificationRule")
 {
 RuleExpressionCondition condition;
 condition = rule.Condition as RuleExpressionCondition;
 CodeBinaryOperatorExpression expression;
 expression = condition.Expression as
 CodeBinaryOperatorExpression;
 expression.Right = new CodePrimitiveExpression(120);
 }
 }
 instance.ApplyWorkflowChanges(workflowchanges);
}

Once we have our rule set, we can iterate through our rules. In the above code,
we are turning off the AdjustBugPriorityForSecurity rule. We can enable and
disable rules on the fly by toggling the Active property of a rule.

The modifications the code makes will apply to one specific
instance of a workflow. In other words, we aren't changing the
compiled workflow definition. If we wanted to turn the security
rule off for all workflows in the future, we'd either have to run
this code on every bug scoring workflow we create, or modify
the rule set in the designer and recompile.

In addition, the above code makes�� changes that are even more dramatic to our
notification rule. We are changing the rule's conditional expression from this.
score > 75 to this.score > 120. Expressions can be tricky to manipulate, but
remember the .rules file will contain an XML representation of the CodeDom objects
that make the rule. We can look inside the file to see how the condition is built for the
NotificationRule (shown overleaf).

Rules and Conditions

[232]

<RuleExpressionCondition.Expression>

 <ns0:CodeBinaryOperatorExpression Operator="GreaterThan">

 <ns0:CodeBinaryOperatorExpression.Left>
 <ns0:CodePropertyReferenceExpression PropertyName="Score">
 <ns0:CodePropertyReferenceExpression.TargetObject>
 <ns0:CodeThisReferenceExpression />
 </ns0:CodePropertyReferenceExpression.TargetObject>
 </ns0:CodePropertyReferenceExpression>
 </ns0:CodeBinaryOperatorExpression.Left>
 <ns0:CodeBinaryOperatorExpression.Right>

 <ns0:CodePrimitiveExpression>

 <ns0:CodePrimitiveExpression.Value>

 <ns1:Int32 >75</ns1:Int32>

 </ns0:CodePrimitiveExpression.Value>
 </ns0:CodePrimitiveExpression>
 </ns0:CodeBinaryOperatorExpression.Right>
 </ns0:CodeBinaryOperatorExpression>
</RuleExpressionCondition.Expression>
</RuleExpressionCondition>

Looking at the XML we can see that we need to replace the
CodePrimitiveExpression assigned to the Right property of the
CodeBinaryOperatorExpression. Using the CodeDom types we could replace the
condition, modify actions, and even build new rules on the fly.

Summary
In this chapter, we've covered conditions and rules in Windows Workflow. There
are several activities in WF featuring conditional logic, including the powerful
ConditionedActivityGroup. The purpose of the Windows Workflow Policy
activity is to execute sets of rules. These rules contain declarative knowledge, and
we can prioritize rules and use forward chaining execution semantics. By writing
out our business knowledge in declarative statements instead of in procedural code,
we gain a great deal of flexibility. We can track and trace rules, and update rule sets
dynamically. Windows Workflow is a capable rules engine.

Index
A
activities, basic

about 75
CodeActivity 75, 76
DelayActivity 82
EventHandlingScopeActivity 83
IfElseActivity 76, 77
InvokeWorkflowActivity 80
ListenActivity 82
ParallelActivity 80, 81
ReplicatorActivity 83
SequenceActivity 78
SuspendActivity 78
SynchronizationScopeActivity 83
TerminateActivity 79
ThrowActivity 79
WhileActivity 78

activities, for communicating
about 84
activity generator 87
CallExternalMethodActivity 85, 86
HandleExternalEventActivity 86, 87

activities, for compensation
about 90, 91
CompensatableSequenceActivity 91
CompensatableTransactionScopeActivity

91
CompensateActivity 92

activities, for conditions and rules
about 92
ConditionedActivityGroup 92, 93
PolicyActivity 94

activities, for fault handling
about 87
FaultHandlerActivity 89

FaultHandlersActivity 88
activities, for transaction

about 89
TransactionScopeActivity 90

activities, for web services
about 95
InvokeWebServiceActivity 95, 96
WebServiceFaultActivity 96
WebServiceInputActivity 96
WebServiceOutputActivity 96

activities, state activities
about 96
EventDrivenActivity 99
SetStateActivity 100
StateActivity 97
StateFinalizationActivity 98
StateInitializationActivity 98

activity composition
black box 106
black box, opening 106
bug tracking workflow 103, 104
composition summary 110, 111
dependency property 107
property promotion, black box 107-109
pure code approach 104
working with 103-111

activity execution
about 122
custom composite activities 124-127
execution context 123
methods 123
template activity, custom composite

activities 126
authorization, role-based

about 186, 187
roles and activities 187

[234]

C
CAG. See conditioned activity group
conditioned activity group

about 211
activities 212
in workflow designer 211-214
using 214

conditions
.rules file, rule conditions 208, 209
about 204
available expressions, rule conditions 210
code conditions 205-207
conditioned activity group 211-214
conditioned activity group, using 214
rule conditions 207-211
rules and activation, rule conditions

210, 211
working with 205

correlation parameters
about 180-182
correlation alias, correlation attributes 184
correlation attributes 183, 184
correlation initializer, correlation attributes

184
correlation parameter, correlation attributes

184
correlation tokens, correlation attributes

185, 186
derivation 116

custom activities
activity composition 103-111
activity composition, reusability 102
activity execution 122-127
building 103
dependency properties 111-116
domain specific languages 102, 103
extensibility 102
need for 101-103
reusability 102

D
declarative knowledge 203
dependency properties

about 111-113
activity binding 113

attached properties 114
meta properties 115

derivation
about 116
activity components 119-122
activity designers, activity components

120-122
activity validators, activity components 119
ConsoleWriteActivity 117, 118

L
local communication services

authorization, role-based 186-188
correlation parameters 180-186
redux 179, 180
workflow queues 189-193

P
persistence services 139
policy

about 215
chaining behavior, controlling chaining 225
chaining with attributes, rule dependencies

223, 224
controlling chaining 225
evaluation 220
explicit chaining, rule dependencies 225
forward chaining, rule dependencies 222
implicit chaining, rule dependencies 222,

223
priority 220
re-evaluation behavior, controlling chain-

ing 226
rule dependencies 221-224
workflow, creating 215-218

procedural knowledge 203
pure code approach

about 27
with Visual Studio 28-30

pure XAML approach
about 32, 33
code generation 42-44
custom activities, using 35, 36
workflows, compiling 36-44
workflows, compiling with MSBuild 40-42

[235]

workflows, compiling with Wfc.exe 37, 38
workflows, compiling with

WorkflowCompiler 38, 39
XAML, activating 45
XAML serialization 42-44

R
rules

about 204
dynamic updates 230-232
policy activity 215
rules engine 226-229
tracing rules, rules engine 226-228
tracking rules, rules engine 228, 229
working with 214

runtime, Windows Workflow
configuring 133, 134
environment, managing 130
events 130
logging 131
trace listener 132
trace sources, enabling 131
workflow configuration sections 133
WorkflowRuntime class 129
workflows, managing 130

S
scheduling services

about 135
configuration 137, 138
criteria for choosing 139
scheduling parameters 139
threads 135, 136

sequential workflow
companion property, parameters 61
events 56-60
events, raising 62-70
events and methods 62
fault handlers 70-72
fault handlers, configuring 72
host implementation, events and methods

69, 70
methods, invoking 62-70
parameters 60-62
SequenceActivity 51, 52

sequence inside sequence, SequenceActivity
54-56

service contracts, events and methods 63-65
service implementation, events and

methods 65, 66
simple flow, SequenceActivity 52, 53
tracking service for workflow monitoring

60
workflow implementation, events and

methods 66-68
state machine

about 161
bugs 165-167
completed state, state activity 167
driving 171, 172
event 162
event driven activity, state activity 168, 169
first state machine 163-172
hierarchical state machines 176, 177
initial state, state activity 167
inspecting 173-175
in Windows Workflow 162
project, creating 163-165
SetState activity, state activity 169-171
state 162
state activity 167-171
StateFinalization activity, state activity 171
StateInitialization activity, state activity 171
state machine workflow 161
transition 162

V
Visual Studio 2005 Extensions

about 12, 13
designer looks 15
validation & debugging 15
XAML 13, 14

W
web service communication

InvokeWebService activity 201, 202
WebServiceInput activity 195
WebServiceOutput activity 196, 197
web service workflows, publishing 197-199
workflows as web service clients 200-202

[236]

workflows as web services 194-198
Windows Workflow

.NET 3.0 framework, downloading 19
activities 11, 12
base activity library 75
basic activities 75-83
code and XAML together 47, 48
compensation activities 90-92
compiling workflows, pure XAML

approach 36-44
conditions and rules activities 92-94
correlation parameters 180-186
custom activities 11, 12, 101
custom activities, pure XAML approach

35, 36
debugging feature, Visual Studio 2005

Extensions 15
designer looks, Visual Studio 2005

Extensions 15
event driven workflow 51
execution styles 51
fault handling activities 87-89
first workflow, creating 19-24
local communication events, activities

84-87
local communication services 179
local communication services, redux 179
objects and their relationships 31
persistence services 139
persistence services, runtime services 18
pure code and Visual Studio 28-31
pure code approach 27-31
pure XAML approach 32-45
runtime 15-19, 129-134
runtime, configuring 133, 134
runtime, hosting 16, 17
runtime events 130
runtime logging 131-133
runtime services 17
scheduling services 135-139

scheduling services, runtime services 18
sequential workflow 51
state activities 96-100
trace listener, runtime 132, 133
trace sources, runtime 131
tracking services, runtime services 19
transaction activities 89, 90
transaction services, runtime services 18
validation, Visual Studio 2005 Extensions

15
Visual Studio 2005 Extensions 12-15
Visual Studio 2005 Extensions,

downloading 19
web service communication 194
web services activities 95, 96
XAML, Visual Studio 2005 Extensions 13,

14
XAML activation, pure XAML approach 45

Windows Workflow runtime
about 15
hosting 16
services 17-19

workflow
approach 27
declarative style, approach 27
imperative style, approach 27

workflow, compiling
code generation 42-44
with MSBuild 40-42
with Wfc.exe 37, 38
with workflow compiler 38-40
XAML serialization 42-44

workflow queues
about 189
queues, communicating with 194
waiting activity, cancelling 193
waiting activity, finding 191-193
WorkflowQueue 190
WorkflowQueueInfo 190

	Programming Windows Workflow Foundation
	Table of Contents
	Preface
	Chapter 1: Hello, Workflow
	Building Workflow Solutions
	A Windows Workflow Tour
	Activities
	Custom Activities

	Visual Studio 2005 Extensions
	Windows Workflow and XAML
	WF Validation and Debugging
	Designer Looks

	The Windows Workflow Runtime
	Hosting the Windows Workflow Runtime
	Runtime Services

	Our First Workflow
	Summary

	Chapter 2: Authoring Workflows
	Pure Code
	Pure Code and Visual Studio

	Objects and Their Relationships
	Pure XAML
	Using Custom Activities in XAML
	Compiling Workflows
	Compiling with Wfc.exe
	Compiling with WorkflowCompiler
	Compilation with MSBuild
	Code Generation and XAML Serialization

	XAML Activation
	XAML-only Summary

	Code and XAML Together
	Summary

	Chapter 3: Sequential Workflows
	The SequenceActivity
	Simple Flow
	Sequences Inside Sequences

	Workflows and the Outside World
	Workflow Instance Lifetime Events
	Workflow Parameters
	Raising Events and Invoking Methods
	Service Contracts
	Service Implementation
	Workflow Implementation
	Host Implementation

	Faults
	Summary

	Chapter 4: The Base Activity Library
	The Basics
	The CodeActivity
	The IfElseActivity
	The WhileActivity
	The SequenceActivity
	The SuspendActivity
	The TerminateActivity
	The ThrowActivity
	The InvokeWorkflowActivity
	The ParallelActivity
	The DelayActivity
	The ListenActivity
	The EventHandlingScopeActivity
	The SynchronizationScopeActivity
	The ReplicatorActivity

	Local Communication Events
	The CallExternalMethodActivity
	The HandleExternalEventActivity
	The Activity Generator

	Fault Handling
	The FaultHandlersActivity
	The FaultHandlerActivity

	Transactions and Compensation
	The TransactionScopeActivity
	Compensation
	The CompensatableSequenceActivity
	The CompensatableTransactionScopeActivity
	The CompensateActivity

	Conditions and Rules
	The ConditionedActivityGroup
	The PolicyActivity

	Web Services
	The InvokeWebServiceActivity
	The WebServiceInputActivity
	The WebServiceOutputActivity
	The WebServiceFaultActivity

	State Activities
	The StateActivity
	The StateInitializationActivity
	The StateFinalizationActivity
	The EventDrivenActivity
	The SetStateActivity

	Summary

	Chapter 5: Custom Activities
	Why Would I Build Custom Activities?
	Reusability
	Extensibility
	Domain-Specific Languages

	How Do I Build Custom Activities?
	Activity Composition
	Opening a Black Box
	Property Promotion

	Composition Summary

	Dependency Properties
	Activity Binding
	Attached Properties
	Meta-Properties
	Dependency Property Summary

	Derivation
	ConsoleWriteActivity
	Activity Components
	Activity Validators
	Activity Designers

	Activity Execution
	Execution Context
	Custom Composite Activities

	Summary

	Chapter 6: Workflow Hosting
	The Workflow Runtime
	Workflow Runtime Logging
	Workflow Runtime Configuration
	Workflow Configuration Sections

	Scheduling Services
	Scheduling Services and Threads
	Scheduling Services and Configuration
	Scheduling Parameters

	Choosing the Right Scheduling Service

	Persistence Services
	Persistence Classes
	The SqlWorkflowPersistenceService
	SQL Persistence Service Configuration
	Running with Persistence
	Persistence and Serialization

	Tracking Services
	Tracking Classes
	Tracking Configuration
	Running with Tracking
	Tracking Profiles

	Data Maintenance

	Persistence and Tracking Together
	Shared Connection Configuration

	Summary

	Chapter 7: Event-Driven Workflows
	What Is a State Machine?
	State Machines in Windows Workflow
	Our First State Machine
	Creating the Project
	Life of a Bug
	The State Activity
	The EventDriven Activity
	The SetState Activity
	The StateInitialization and StateFinalization Activities

	Driving the State Machine

	Inspecting State Machines
	StateMachineWorkflowInstance
	State Machine Tracking

	Hierarchical State Machines
	Summary

	Chapter 8: Communication in Workflows
	Local Communication Services Redux
	Correlation Parameters
	Correlation Attributes
	Correlation Tokens

	Role‑Based Authorization
	Roles and Activities

	Workflow Queues
	WorkflowQueue and WorkflowQueueInfo
	Finding the Waiting Activity
	Canceling a Waiting Activity
	Communicating with Queues

	Web Service Communication
	Workflows as Web Services
	WebServiceInput Activity
	WebServiceOutput Activity
	Publishing Web Service Workflows

	Workflows as Web Service Clients
	InvokeWebService Activity

	Summary

	Chapter 9: Rules and Conditions
	What are Rules and Conditions?
	Working with Conditions
	Code Conditions
	Rule Conditions
	The .rules File
	Available Expressions
	Rules and Activation

	The Conditioned Activity Group
	When to Use the CAG

	Working with Rules
	The Policy Activity
	Creating a Policy Workflow
	Evaluation
	Priority
	Rule Dependencies
	Controlling Chaining

	Rules Engine Tracing and Tracking
	Tracing Rules
	Tracking Rules

	Dynamic Updates

	Summary

	Index

